IDEAS home Printed from https://ideas.repec.org/a/abq/ijist1/v6y2024i5p312-328.html
   My bibliography  Save this article

The Customer Reviews Analysis Platform by Correlating Sentiment Analysis and Text Clustering

Author

Listed:
  • Ehtisham ur Rehman, Najam Aziz, Nasir Ahmad

    (Dept. of Computer Science, University of Engineering and Technology (UET), Peshawar, Pakistan. Dept. of Computer Systems Engineering, University of Engineering and Technology (UET))

Abstract

Customer reviews and feedback are of paramount importance in the improvement cycle of any industry, product, or service. Formerly, product ratings were the basis for performance evaluation and key drivers of improvements. However, ratings were unable to depict the complete picture and were not adequate for an in-depth analysis of any product or service. Hence, customer reviews become the ultimate source of providing feedback for a specific detailed analysis as well as contributing to performance metrics. Although, customer reviews provide a very essential measure for performance evaluation, extracting important features and topics from customer reviews has been challenging due to its unlabeled and variant nature. This paper focuses on extracting topics from customer review data and bringing in use the of implicit knowledge for analytics. To extract topics and clusters from review data, unsupervised machine learning algorithms such as K-Means and Latent Dirichlet Allocation (LDA) are used. These topics are then correlated with sentiment analysis - score of positive or negative feedback - of each customer review. The products or services are then categorized with the help of the topics or domains they belong to alongside the sentiments. This provides a valuable analysis such as the score of positive, neutral, and negative feedback for each customer review input to new customers as well as product managers. This research work aims to use the hotel reviews dataset to categorize and rank hotels based on the different services captured in the text from customer reviews. The research work makes use of the hotel reviews dataset for categorizing and ranking hotels based on the different services discussed in the customer's reviews text. Moreover, this paper also provides a visualization of both text clustering algorithms depicting the topics in each cluster for an insightful analysis.

Suggested Citation

  • Ehtisham ur Rehman, Najam Aziz, Nasir Ahmad, 2024. "The Customer Reviews Analysis Platform by Correlating Sentiment Analysis and Text Clustering," International Journal of Innovations in Science & Technology, 50sea, vol. 6(5), pages 312-328, June.
  • Handle: RePEc:abq:ijist1:v:6:y:2024:i:5:p:312-328
    as

    Download full text from publisher

    File URL: https://journal.50sea.com/index.php/IJIST/article/view/852/1400
    Download Restriction: no

    File URL: https://journal.50sea.com/index.php/IJIST/article/view/852
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guo, Yue & Barnes, Stuart J. & Jia, Qiong, 2017. "Mining meaning from online ratings and reviews: Tourist satisfaction analysis using latent dirichlet allocation," Tourism Management, Elsevier, vol. 59(C), pages 467-483.
    2. Diego Kozlowski & Viktoriya Semeshenko & Andrea Molinari, 2021. "Latent Dirichlet allocation model for world trade analysis," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen The Hien & Yen-Lun Su & Raksmey Sann & Le Thi Phuong Thanh, 2022. "Analysis of Online Customer Complaint Behavior in Vietnam’s Hotel Industry," Sustainability, MDPI, vol. 14(7), pages 1-15, March.
    2. Xin Zhang & Jiaming Liu & He Zhu & Zongcai Huang & Shuying Zhang & Ping Li, 2021. "A Comparative Study of Customer Perceptions of Urban and Rural Bed and Breakfasts in Beijing: An Analysis of Online Reviews," Sustainability, MDPI, vol. 13(20), pages 1-15, October.
    3. Clérito Kaveski Peres & Edson Pacheco Paladini, 2022. "Quality Attributes of Hotel Services in Brazil and the Impacts of COVID-19 on Users’ Perception," Sustainability, MDPI, vol. 14(6), pages 1-15, March.
    4. Seungju Nam & Hyun Cheol Lee, 2019. "A Text Analytics-Based Importance Performance Analysis and Its Application to Airline Service," Sustainability, MDPI, vol. 11(21), pages 1-24, November.
    5. Xiangzhi Huang & Xuekai Cen & Ming Cai & Rui Zhou, 2022. "A Framework to Analyze Function Domains of Autonomous Transportation Systems Based on Text Analysis," Mathematics, MDPI, vol. 11(1), pages 1-19, December.
    6. Martin-Domingo, Luis & Martín, Juan Carlos & Mandsberg, Glen, 2019. "Social media as a resource for sentiment analysis of Airport Service Quality (ASQ)," Journal of Air Transport Management, Elsevier, vol. 78(C), pages 106-115.
    7. Feifei Wang & Yang Yang & Geoffrey K. F. Tso & Yang Li, 2019. "Analysis of launch strategy in cross-border e-Commerce market via topic modeling of consumer reviews," Electronic Commerce Research, Springer, vol. 19(4), pages 863-884, December.
    8. Abdullah Akgün & Beykan Çizel & Edina Ajanovic, 2022. "Mining excursion tourist profile through classification algorithms," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(4), pages 2567-2588, August.
    9. Eunhye Park & Junehee Kwon & Sung-Bum Kim, 2021. "Green Marketing Strategies on Online Platforms: A Mixed Approach of Experiment Design and Topic Modeling," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    10. Ziye Shang & Jian Ming Luo, 2022. "Topic Modeling for Hiking Trail Online Reviews: Analysis of the Mutianyu Great Wall," Sustainability, MDPI, vol. 14(6), pages 1-16, March.
    11. Wang, Binni & Wang, Pong & Tu, Yiliu, 2021. "Customer satisfaction service match and service quality-based blockchain cloud manufacturing," International Journal of Production Economics, Elsevier, vol. 240(C).
    12. Morris, J., 2023. "The Impact of Qualitative Reviews on Racial Statistical Discrimination: Evidence from Airbnb," Cambridge Working Papers in Economics 2331, Faculty of Economics, University of Cambridge.
    13. Li, Munan & Wang, Wenshu & Zhou, Keyu, 2021. "Exploring the technology emergence related to artificial intelligence: A perspective of coupling analyses," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    14. Tian, Chao & Tu, Kai & Sui, Haiqing & Sun, Qi, 2024. "Value co-creation in shared mobility: The case of carpooling in China," Technological Forecasting and Social Change, Elsevier, vol. 205(C).
    15. Weiwei Liu & Jianwei Yan & Xiang Sun & Ruiqi Song, 2025. "Research on “Identification–Cognition–Perception” of the Pedestrian Spaces Around Subway Stations near Popular Tourist Attractions from the Tourists’ Perspective: A Case Study of Tianjin," Land, MDPI, vol. 14(1), pages 1-28, January.
    16. Deborah Agostino & Marco Brambilla & Silvio Pavanetto & Paola Riva, 2021. "The Contribution of Online Reviews for Quality Evaluation of Cultural Tourism Offers: The Experience of Italian Museums," Sustainability, MDPI, vol. 13(23), pages 1-20, December.
    17. Zhang, Min & Sun, Lin & Wang, G. Alan & Li, Yuzhuo & He, Shuguang, 2022. "Using neutral sentiment reviews to improve customer requirement identification and product design strategies," International Journal of Production Economics, Elsevier, vol. 254(C).
    18. Anna Kuikka & Heli Hallikainen & Sasu Tuominen & Tommi Laukkanen, 2025. "What drives customer loyalty in a pandemic? Semantic analysis of grocery retailers," Electronic Commerce Research, Springer, vol. 25(3), pages 2205-2240, June.
    19. Enrique Bigne & Carla Ruiz & Carmen Perez-Cabañero & Antonio Cuenca, 2023. "Are customer star ratings and sentiments aligned? A deep learning study of the customer service experience in tourism destinations," Service Business, Springer;Pan-Pacific Business Association, vol. 17(1), pages 281-314, March.
    20. Yucheng Zhang & Zhiling Wang & Lin Xiao & Lijun Wang & Pei Huang, 2023. "Discovering the evolution of online reviews: A bibliometric review," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-22, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:abq:ijist1:v:6:y:2024:i:5:p:312-328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Iqra Nazeer (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.