IDEAS home Printed from https://ideas.repec.org/a/abq/ijist1/v3y2022i4p187-196.html
   My bibliography  Save this article

Flow Analysis of Various Inlet Velocity Profiles on Indoor Temperature for Energy Conservation of HVAC System Using CFD

Author

Listed:
  • Atta ul Mannan Hashmi

    (Department of Mechanical Engineering, NUST College of Electrical and Mechanical Engineering, National University of Sciences and Technology, Islamabad, Pakistan.)

  • Arshan Ahmed

    (Department of Mechanical Engineering, NUST College of Electrical and Mechanical Engineering, National University of Sciences and Technology, Islamabad, Pakistan.)

  • Fahad Rafi Butt

    (Research Associate, Digital Pakistan Lab, NUST College of Electrical and Mechanical Engineering, National University of Sciences and Technology, Islamabad, Pakistan.)

  • Shahbaz Ghani

    (Department of Mechanical Engineering, NUST College of Electrical and Mechanical Engineering, National University of Sciences and Technology, Islamabad, Pakistan.)

  • Imran Akhtar

    (Department of Mechanical Engineering, NUST College of Electrical and Mechanical Engineering, National University of Sciences and Technology, Islamabad, Pakistan.)

Abstract

Energy conservation has been the most popular topic of the modern world. Heating, Ventilation and Air Conditioning (HVAC) systems consume approximately 10 % of the total energy of world. In order to improve the efficiency of HVAC systems, two dimensional (2D) room with inlet, outlet and heat source has been modeled. ANSYS Fluent has been used for numerical analysis of air flow in a 2D room. User Defined Functions (UDFs), which are coded in C language and hooked in ANSYS fluent, have been used for recording temperature variations and for heat generation within 2D room. Besides studying velocity fields and temperature distributions within indoor environment under specified boundary conditions, reference region for comparative analysis is also selected during Steady State (SS) numerical simulations. During transient analysis, temperature variations of a selected location are recorded for four different scenarios under varying inlet velocity profiles i.e. three for 0°, 30°, 60° angle with 1.3661 m/s velocity and fourth 0° with 2.7322 m/s velocity. Temperature profile of reference region after 1500 sec of transient simulations are compared with the steady state. Temperature profile of the scenario once the air is injected at 30° closely matched with the steady state temperature profile of the selected region. Time for attainment of SS temperature is also measured and compared after transient simulations. SS temperature value was attained twice, first at 240 seconds when the air was injected at 0° with 2.7322 m/s and secondly at 522 seconds when inlet air entered at velocity of 1.3361 m/s at 30°. The power consumption by increasing the fan speed is much higher as compared to the power consumed for changing direction only.

Suggested Citation

  • Atta ul Mannan Hashmi & Arshan Ahmed & Fahad Rafi Butt & Shahbaz Ghani & Imran Akhtar, 2022. "Flow Analysis of Various Inlet Velocity Profiles on Indoor Temperature for Energy Conservation of HVAC System Using CFD," International Journal of Innovations in Science & Technology, 50sea, vol. 3(Special I), pages 187-196, february.
  • Handle: RePEc:abq:ijist1:v:3:y:2022:i:4:p:187-196
    DOI: 10.33411/IJIST/2021030515
    as

    Download full text from publisher

    File URL: https://journal.50sea.com/index.php/IJIST/Flow-Analysis-of-Various-Inlet-Velocity
    Download Restriction: no

    File URL: https://journal.50sea.com/index.php/IJIST/article/view/119
    Download Restriction: no

    File URL: https://libkey.io/10.33411/IJIST/2021030515?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ni, Jiacheng & Bai, Xuelian, 2017. "A review of air conditioning energy performance in data centers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 625-640.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leehter Yao & Jin-Hao Huang, 2019. "Multi-Objective Optimization of Energy Saving Control for Air Conditioning System in Data Center," Energies, MDPI, vol. 12(8), pages 1-16, April.
    2. Zhiyuan Liu & Hang Yu & Rui Liu & Meng Wang & Chaoen Li, 2020. "Configuration Optimization Model for Data-Center-Park-Integrated Energy Systems under Economic, Reliability, and Environmental Considerations," Energies, MDPI, vol. 13(2), pages 1-22, January.
    3. Aristov, Yu.I., 2021. "Adsorptive conversion of ultralow-temperature heat: Thermodynamic issues," Energy, Elsevier, vol. 236(C).
    4. Wang, Fengjuan & Lv, Chengwei & Xu, Jiuping, 2023. "Carbon awareness oriented data center location and configuration: An integrated optimization method," Energy, Elsevier, vol. 278(C).
    5. Shunling Ruan & Haiyan Xie & Song Jiang, 2017. "Integrated Proactive Control Model for Energy Efficiency Processes in Facilities Management: Applying Dynamic Exponential Smoothing Optimization," Sustainability, MDPI, vol. 9(9), pages 1-22, September.
    6. Prince, & Hati, Ananda Shankar, 2021. "A comprehensive review of energy-efficiency of ventilation system using Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    7. Manaserh, Yaman M. & Tradat, Mohammad I. & Bani-Hani, Dana & Alfallah, Aseel & Sammakia, Bahgat G. & Nemati, Kourosh & Seymour, Mark J., 2022. "Machine learning assisted development of IT equipment compact models for data centers energy planning," Applied Energy, Elsevier, vol. 305(C).
    8. Boza, Pal & Evgeniou, Theodoros, 2021. "Artificial intelligence to support the integration of variable renewable energy sources to the power system," Applied Energy, Elsevier, vol. 290(C).
    9. Jing Ni & Bowen Jin & Bo Zhang & Xiaowei Wang, 2017. "Simulation of Thermal Distribution and Airflow for Efficient Energy Consumption in a Small Data Centers," Sustainability, MDPI, vol. 9(4), pages 1-16, April.
    10. Jerez Monsalves, Juan & Bergaentzlé, Claire & Keles, Dogan, 2023. "Impacts of flexible-cooling and waste-heat recovery from data centres on energy systems: A Danish case study," Energy, Elsevier, vol. 281(C).
    11. M. Hasan Jamal & M. Tayyab Chaudhry & Usama Tahir & Furqan Rustam & Soojung Hur & Imran Ashraf, 2022. "Hotspot-Aware Workload Scheduling and Server Placement for Heterogeneous Cloud Data Centers," Energies, MDPI, vol. 15(7), pages 1-20, March.
    12. Tong, Zhen & Wang, Wencheng & Fang, Chunxue, 2023. "Energy-saving potential analysis of a CO2 two-phase thermosyphon loop system used in data centers," Energy, Elsevier, vol. 275(C).
    13. Ye, Guisen & Gao, Feng & Fang, Jingyang, 2022. "A mission-driven two-step virtual machine commitment for energy saving of modern data centers through UPS and server coordinated optimizations," Applied Energy, Elsevier, vol. 322(C).
    14. Cheung, Howard & Wang, Shengwei & Zhuang, Chaoqun & Gu, Jiefan, 2018. "A simplified power consumption model of information technology (IT) equipment in data centers for energy system real-time dynamic simulation," Applied Energy, Elsevier, vol. 222(C), pages 329-342.
    15. Jin, Chaoqiang & Bai, Xuelian & Yang, Chao & Mao, Wangxin & Xu, Xin, 2020. "A review of power consumption models of servers in data centers," Applied Energy, Elsevier, vol. 265(C).
    16. Zhan, Sicheng & Liu, Zhaoru & Chong, Adrian & Yan, Da, 2020. "Building categorization revisited: A clustering-based approach to using smart meter data for building energy benchmarking," Applied Energy, Elsevier, vol. 269(C).
    17. Shun-Hsiung Peng & Shang-Lien Lo, 2024. "An Economic Analysis of Energy Saving and Carbon Mitigation by the Use of Phase Change Materials for Cool Energy Storage for an Air Conditioning System—A Case Study," Energies, MDPI, vol. 17(4), pages 1-17, February.
    18. Jing Ni & Bowen Jin & Shanglei Ning & Xiaowei Wang, 2019. "The Numerical Simulation of the Airflow Distribution and Energy Efficiency in Data Centers with Three Types of Aisle Layout," Sustainability, MDPI, vol. 11(18), pages 1-13, September.
    19. Alberto Cocaña-Fernández & Emilio San José Guiote & Luciano Sánchez & José Ranilla, 2019. "Eco-Efficient Resource Management in HPC Clusters through Computer Intelligence Techniques," Energies, MDPI, vol. 12(11), pages 1-21, June.
    20. Emelie Wibron & Anna-Lena Ljung & T. Staffan Lundström, 2019. "Comparing Performance Metrics of Partial Aisle Containments in Hard Floor and Raised Floor Data Centers Using CFD," Energies, MDPI, vol. 12(8), pages 1-17, April.

    More about this item

    Keywords

    HVAC systems; energy conservation; computational fluid dynamics; user defined functions and heat generation;
    All these keywords.

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:abq:ijist1:v:3:y:2022:i:4:p:187-196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Hafiz Haroon Ahmad, Iqra Nazeer (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.