IDEAS home Printed from https://ideas.repec.org/r/pal/jorsoc/v59y2008i5d10.1057_palgrave.jors.2602384.html
   My bibliography  Save this item

Modelling undesirable outputs with zero sum gains data envelopment analysis models

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Xianhua Wu & Yufeng Chen & Ji Guo & Ge Gao, 2018. "Inputs optimization to reduce the undesirable outputs by environmental hazards: a DEA model with data of PM2.5 in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(1), pages 1-25, January.
  2. Wang, Ke & Zhang, Xian & Wei, Yi-Ming & Yu, Shiwei, 2013. "Regional allocation of CO2 emissions allowance over provinces in China by 2020," Energy Policy, Elsevier, vol. 54(C), pages 214-229.
  3. Zhou, P. & Wang, M., 2016. "Carbon dioxide emissions allocation: A review," Ecological Economics, Elsevier, vol. 125(C), pages 47-59.
  4. Laura Rodríguez-Fernández & Ana Belén Fernández Carvajal & María Bujidos-Casado, 2020. "Allocation of Greenhouse Gas Emissions Using the Fairness Principle: A Multi-Country Analysis," Sustainability, MDPI, vol. 12(14), pages 1-15, July.
  5. Sun, Jiasen & Li, Guo & Wang, Zhaohua, 2018. "Optimizing China’s energy consumption structure under energy and carbon constraints," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 57-72.
  6. Zhu, Qingyuan & Li, Xingchen & Li, Feng & Wu, Jie & Zhou, Dequn, 2020. "Energy and environmental efficiency of China's transportation sectors under the constraints of energy consumption and environmental pollutions," Energy Economics, Elsevier, vol. 89(C).
  7. Sun, J. & Wen, W. & Wang, M. & Zhou, P., 2022. "Optimizing the provincial target allocation scheme of renewable portfolio standards in China," Energy, Elsevier, vol. 250(C).
  8. Feng, Chenpeng & Chu, Feng & Ding, Jingjing & Bi, Gongbing & Liang, Liang, 2015. "Carbon Emissions Abatement (CEA) allocation and compensation schemes based on DEA," Omega, Elsevier, vol. 53(C), pages 78-89.
  9. Chen, Zhenling & Yuan, Xiao-Chen & Zhang, Xiaoling & Cao, Yunfei, 2020. "How will the Chinese national carbon emissions trading scheme work? The assessment of regional potential gains," Energy Policy, Elsevier, vol. 137(C).
  10. Jiekun Song & Rui Chen & Xiaoping Ma, 2022. "Provincial Allocation of Energy Consumption, Air Pollutant and CO 2 Emission Quotas in China: Based on a Weighted Environment ZSG-DEA Model," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
  11. Pan, Yuling & Dong, Feng, 2023. "Green finance policy coupling effect of fossil energy use rights trading and renewable energy certificates trading on low carbon economy: Taking China as an example," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 658-679.
  12. Wen-Hsien Tsai & Shi-Yin Jhong, 2018. "Carbon Emissions Cost Analysis with Activity-Based Costing," Sustainability, MDPI, vol. 10(8), pages 1-26, August.
  13. Wen Guo & Tao Sun & Hongjun Dai, 2017. "Efficiency Allocation of Provincial Carbon Reduction Target in China’s “13·5” Period: Based on Zero-Sum-Gains SBM Model," Sustainability, MDPI, vol. 9(2), pages 1-18, January.
  14. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
  15. Xin Zheng & Shenya Mao & Siqi Lv & Sheng Wang, 2022. "An Optimization Study of Provincial Carbon Emission Allowance Allocation in China Based on an Improved Dynamic Zero-Sum-Gains Slacks-Based-Measure Model," Sustainability, MDPI, vol. 14(12), pages 1-22, June.
  16. Ciardiello, F. & Genovese, A. & Simpson, A., 2019. "Pollution responsibility allocation in supply networks: A game-theoretic approach and a case study," International Journal of Production Economics, Elsevier, vol. 217(C), pages 211-217.
  17. Yu, Anyu & Lee, Andy & Chen, Yao, 2021. "Carbon allocation targeting with abatement capability: A firm-level study," International Journal of Production Economics, Elsevier, vol. 235(C).
  18. Xi Jin & Bin Zou & Chan Wang & Kaifeng Rao & Xiaowen Tang, 2019. "Carbon Emission Allocation in a Chinese Province-Level Region Based on Two-Stage Network Structures," Sustainability, MDPI, vol. 11(5), pages 1-24, March.
  19. Lucas Assunção & Andréa Cynthia Santos & Thiago F. Noronha & Rafael Andrade, 2021. "Improving logic-based Benders' algorithms for solving min-max regret problems," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(2), pages 23-57.
  20. Bouzidis, Thanasis & Karagiannis, Giannis, 2022. "An alternative ranking of DMUs performance for the ZSG-DEA model," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
  21. Yang, Mian & Hou, Yaru & Fang, Chao & Duan, Hongbo, 2020. "Constructing energy-consuming right trading system for China's manufacturing industry in 2025," Energy Policy, Elsevier, vol. 144(C).
  22. Yang, Feng & Wu, Desheng Dash & Liang, Liang & O'Neill, Liam, 2011. "Competition strategy and efficiency evaluation for decision making units with fixed-sum outputs," European Journal of Operational Research, Elsevier, vol. 212(3), pages 560-569, August.
  23. A Z Milioni & J V G de Avellar & T N Rabello & G M de Freitas, 2011. "Hyperbolic frontier model: a parametric DEA approach for the distribution of a total fixed output," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(6), pages 1029-1037, June.
  24. Gurgul, Henryk & Lach, Łukasz, 2019. "Eco-efficiency analysis in generalized IO models: Methods and examples," MPRA Paper 96604, University Library of Munich, Germany.
  25. Yu, Shasha & Lei, Ming & Deng, Honghui, 2023. "Evaluation to fixed-sum-outputs DMUs by non-oriented equilibrium efficient frontier DEA approach with Nash bargaining-based selection," Omega, Elsevier, vol. 115(C).
  26. Alireza Amirteimoori & Simin Masrouri & Feng Yang & Sohrab Kordrostami, 2017. "Context-based competition strategy and performance analysis with fixed-sum outputs: an application to banking sector," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(11), pages 1461-1469, November.
  27. Tingting Liu & Zichen Zheng & Yuneng Du, 2021. "Evaluation on regional science and technology resources allocation in China based on the zero sum gains data envelopment analysis," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1729-1737, August.
  28. Lozano, Sebastián, 2023. "Bargaining approach for efficiency assessment and target setting with fixed-sum variables," Omega, Elsevier, vol. 114(C).
  29. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
  30. Qianwen Yu & Zehao Sun & Junyuan Shen & Xia Xu & Xiangnan Chen, 2023. "Interactive Allocation of Water Pollutant Initial Emission Rights in a Basin under Total Amount Control: A Leader-Follower Hierarchical Decision Model," IJERPH, MDPI, vol. 20(2), pages 1-25, January.
  31. Zhaohua, Wang & Jingyun, Li & Bin, Lu & Bo, Wang & Bin, Zhang & Kaining, Sun & Mao, Fan, 2023. "Effectiveness and risk of initial carbon quota allocation principle under the uncertainty of the Chinese electricity market," China Economic Review, Elsevier, vol. 77(C).
  32. Shi, Wei & Li, Wei & Qiao, Fuwei & Wang, Weijuan & An, Yi & Zhang, Guowei, 2023. "An inter-provincial carbon quota study in China based on the contribution of clean energy to carbon reduction," Energy Policy, Elsevier, vol. 182(C).
  33. Shaofu Du & Jun Qian & Tianzhuo Liu & Li Hu, 2020. "Emission allowance allocation mechanism design: a low-carbon operations perspective," Annals of Operations Research, Springer, vol. 291(1), pages 247-280, August.
  34. Thanasis Bouzidis & Giannis Karagiannis, 2022. "Extending the zero-sum gains data envelopment analysis model," Journal of Productivity Analysis, Springer, vol. 58(2), pages 171-184, December.
  35. Yang, Min & Li, Yong Jun & Liang, Liang, 2015. "A generalized equilibrium efficient frontier data envelopment analysis approach for evaluating DMUs with fixed-sum outputs," European Journal of Operational Research, Elsevier, vol. 246(1), pages 209-217.
  36. Silva, Rodrigo Cesar & Milioni, Armando Zeferino, 2012. "The Adjusted Spherical Frontier Model with weight restrictions," European Journal of Operational Research, Elsevier, vol. 220(3), pages 729-735.
  37. Lin, Rung-Chuan & Sir, Mustafa Y. & Pasupathy, Kalyan S., 2013. "Multi-objective simulation optimization using data envelopment analysis and genetic algorithm: Specific application to determining optimal resource levels in surgical services," Omega, Elsevier, vol. 41(5), pages 881-892.
  38. Jie Wu & Panpan Xia & Qingyuan Zhu & Junfei Chu, 2019. "Measuring environmental efficiency of thermoelectric power plants: a common equilibrium efficient frontier DEA approach with fixed-sum undesirable output," Annals of Operations Research, Springer, vol. 275(2), pages 731-749, April.
  39. S You & H Yan, 2011. "A new approach in modelling undesirable output in DEA model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(12), pages 2146-2156, December.
  40. Yu, Anyu & You, Jianxin & Rudkin, Simon & Zhang, Hao, 2019. "Industrial carbon abatement allocations and regional collaboration: Re-evaluating China through a modified data envelopment analysis," Applied Energy, Elsevier, vol. 233, pages 232-243.
  41. Dalai Ma & Yaping Xiao & Na Zhao, 2022. "Optimization and Spatiotemporal Differentiation of Carbon Emission Rights Allocation in the Power Industry in the Yangtze River Economic Belt," Sustainability, MDPI, vol. 14(9), pages 1-15, April.
  42. Yang, Mian & Hou, Yaru & Ji, Qiang & Zhang, Dayong, 2020. "Assessment and optimization of provincial CO2 emission reduction scheme in China: An improved ZSG-DEA approach," Energy Economics, Elsevier, vol. 91(C).
  43. Yongjun Li & Wenhui Hou & Weiwei Zhu & Feng Li & Liang Liang, 2021. "Provincial carbon emission performance analysis in China based on a Malmquist data envelopment analysis approach with fixed-sum undesirable outputs," Annals of Operations Research, Springer, vol. 304(1), pages 233-261, September.
  44. Xie, Qiwei & Xu, Qifan & Zhu, Da & Rao, Kaifeng & Dai, Qianzhi, 2020. "Fair allocation of wastewater discharge permits based on satisfaction criteria using data envelopment analysis," Utilities Policy, Elsevier, vol. 66(C).
  45. Antunes, Jorge Junio Moreira & Neves, Juliana Campos & Elmor, Larissa Rosa Carneiro & Araujo, Michel Fontaine Reis De & Wanke, Peter Fernandes & Tan, Yong, 2023. "A new perspective on the U.S. energy efficiency: The political context," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
  46. Jie Wu & Qingyuan Zhu & Junfei Chu & Qingxian An & Liang Liang, 2016. "A DEA-based approach for allocation of emission reduction tasks," International Journal of Production Research, Taylor & Francis Journals, vol. 54(18), pages 5618-5633, September.
  47. Yang, Fan & Lee, Hyoungsuk, 2022. "An innovative provincial CO2 emission quota allocation scheme for Chinese low-carbon transition," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
  48. Qingyuan Zhu & Jie Wu & Malin Song & Liang Liang, 2017. "A unique equilibrium efficient frontier with fixed-sum outputs in data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(12), pages 1483-1490, December.
  49. Fang, Kai & Zhang, Qifeng & Long, Yin & Yoshida, Yoshikuni & Sun, Lu & Zhang, Haoran & Dou, Yi & Li, Shuai, 2019. "How can China achieve its Intended Nationally Determined Contributions by 2030? A multi-criteria allocation of China’s carbon emission allowance," Applied Energy, Elsevier, vol. 241(C), pages 380-389.
  50. Chenpeng Feng & Rong Zhou & Jingjing Ding & Xiangze Xiao & Mingyue Pu, 2023. "A Method for Allocation of Carbon Emission Quotas to Provincial-Level Industries in China Based on DEA," Sustainability, MDPI, vol. 15(3), pages 1-21, February.
  51. Milioni, Armando Zeferino & de Avellar, José Virgílio Guedes & Gomes, Eliane Gonçalves & Soares de Mello, João Carlos Correia Baptista, 2011. "An ellipsoidal frontier model: Allocating input via parametric DEA," European Journal of Operational Research, Elsevier, vol. 209(2), pages 113-121, March.
  52. Ma, Gang & Li, Xu & Zheng, Jianping, 2020. "Efficiency and equity in regional coal de-capacity allocation in China: A multiple objective programming model based on Gini coefficient and Data Envelopment Analysis," Resources Policy, Elsevier, vol. 66(C).
  53. Zhang, Jingxiao & Jin, Weixing & Yang, Guo-liang & Li, Hui & Ke, Yongjian & Philbin, Simon Patrick, 2021. "Optimizing regional allocation of CO2 emissions considering output under overall efficiency," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
  54. Wang, Yunqi & Qiu, Jing & Tao, Yuechuan & Zhang, Xian & Wang, Guibin, 2020. "Low-carbon oriented optimal energy dispatch in coupled natural gas and electricity systems," Applied Energy, Elsevier, vol. 280(C).
  55. Halkos, George & Petrou, Kleoniki Natalia, 2019. "Treating undesirable outputs in DEA: A critical review," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 97-104.
  56. Li, Feng & Zhang, Danlu & Zhang, Jinyu & Kou, Gang, 2022. "Measuring the energy production and utilization efficiency of Chinese thermal power industry with the fixed-sum carbon emission constraint," International Journal of Production Economics, Elsevier, vol. 252(C).
  57. Xie, Qiwei & Hu, Ping & Jiang, An & Li, Yongjun, 2019. "Carbon emissions allocation based on satisfaction perspective and data envelopment analysis," Energy Policy, Elsevier, vol. 132(C), pages 254-264.
  58. Song, Malin & An, Qingxian & Zhang, Wei & Wang, Zeya & Wu, Jie, 2012. "Environmental efficiency evaluation based on data envelopment analysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4465-4469.
  59. Thanasis Bouzidis & Giannis Karagiannis, 2022. "A note on the zero-sum gains data envelopment analysis model," Operational Research, Springer, vol. 22(3), pages 1737-1758, July.
  60. Thanasis Bouzidis & Giannis Karagiannis, 2021. "An Alternative Ranking of DMUs Performance for the ZGS-DEA Model," Discussion Paper Series 2021_12, Department of Economics, University of Macedonia, revised Oct 2021.
  61. Thanasis Bouzidis & Giannis Karagiannis, 2022. "Extending the Zero-Sum Gains Data Envelopment Analysis Model," Discussion Paper Series 2022_06, Department of Economics, University of Macedonia, revised Aug 2022.
  62. Yue-Jun Zhang & Jun-Fang Hao, 2017. "Carbon emission quota allocation among China’s industrial sectors based on the equity and efficiency principles," Annals of Operations Research, Springer, vol. 255(1), pages 117-140, August.
  63. Köne, Aylin Çiğdem & Büke, Tayfun, 2012. "A comparison for Turkish provinces’ performance of urban air pollution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1300-1310.
  64. Wu, Jie & Zhu, Qingyuan & Liang, Liang, 2016. "CO2 emissions and energy intensity reduction allocation over provincial industrial sectors in China," Applied Energy, Elsevier, vol. 166(C), pages 282-291.
  65. Zurano-Cervelló, Patricia & Pozo, Carlos & Mateo-Sanz, Josep María & Jiménez, Laureano & Guillén-Gosálbez, Gonzalo, 2019. "Sustainability efficiency assessment of the electricity mix of the 28 EU member countries combining data envelopment analysis and optimized projections," Energy Policy, Elsevier, vol. 134(C).
  66. Xiaohong Yu & Wengao Lou, 2023. "An Exploration of Prediction Performance Based on Projection Pursuit Regression in Conjunction with Data Envelopment Analysis: A Comparison with Artificial Neural Networks and Support Vector Regressio," Mathematics, MDPI, vol. 11(23), pages 1-29, November.
  67. Shihong Zeng & Yan Xu & Liming Wang & Jiuying Chen & Qirong Li, 2016. "Forecasting the Allocative Efficiency of Carbon Emission Allowance Financial Assets in China at the Provincial Level in 2020," Energies, MDPI, vol. 9(5), pages 1-18, May.
  68. Mahdiloo, Mahdi & Ngwenyama, Ojelanki & Scheepers, Rens & Tamaddoni, Ali, 2018. "Managing emissions allowances of electricity producers to maximize CO2 abatement: DEA models for analyzing emissions and allocating emissions allowances," International Journal of Production Economics, Elsevier, vol. 205(C), pages 244-255.
  69. Xi Xiong & Guo-liang Yang & Kai-di Liu & De-qun Zhou, 2022. "A proposed fixed-sum carryovers reallocation DEA approach for social scientific resources of Chinese public universities," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(7), pages 4097-4121, July.
  70. Jie Wu & Jun-Fei Chu & Liang Liang, 2016. "Target setting and allocation of carbon emissions abatement based on DEA and closest target: an application to 20 APEC economies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 279-296, November.
  71. Halkos, George & Petrou, Kleoniki Natalia, 2018. "A critical review of the main methods to treat undesirable outputs in DEA," MPRA Paper 90374, University Library of Munich, Germany.
  72. Eliane Gomes & João Soares de Mello & Geraldo Souza & Lidia Angulo Meza & João Mangabeira, 2009. "Efficiency and sustainability assessment for a group of farmers in the Brazilian Amazon," Annals of Operations Research, Springer, vol. 169(1), pages 167-181, July.
  73. Wen-Chi Yang & Wen-Min Lu, 2023. "Achieving Net Zero—An Illustration of Carbon Emissions Reduction with A New Meta-Inverse DEA Approach," IJERPH, MDPI, vol. 20(5), pages 1-20, February.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.