IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v233-234y2019ip232-243.html
   My bibliography  Save this article

Industrial carbon abatement allocations and regional collaboration: Re-evaluating China through a modified data envelopment analysis

Author

Listed:
  • Yu, Anyu
  • You, Jianxin
  • Rudkin, Simon
  • Zhang, Hao

Abstract

China’s commitment to significantly reducing carbon emissions faces the twin challenges of focusing costly reduction efforts, whilst preserving the rapid growth that has defined the country’s recent past. However, little work has been able to meaningfully reflect the collaborative way in which provinces are assigned targets on a sub-national regional basis. Suggesting a modified data envelopment analysis (DEA) approach which recognises the two objectives of income maximization and pollution abatement cost minimisation, this paper introduces the potential collaboration between industrial units to the modelling framework. Our theoretical work exposits the roles collectives of industrial decision making units may play in optimising against multiple target functions. Considering the period 2012–2014, we illustrate clearly how China’s three regional collaborations interact with the stated aims of national policy. Developed eastern China may take on greater abatement tasks in the short-term, thus freeing central and western China to pursue the economic growth which will then support later abatement. Policy-makers are thus given a tool through which an extra layer of implementation can be evaluated between the national allocation and setting targets for regional individual decision making units. China’s case perfectly exemplifies the conflicts which must be accounted for if the most economical and efficient outcomes are to be achieved.

Suggested Citation

  • Yu, Anyu & You, Jianxin & Rudkin, Simon & Zhang, Hao, 2019. "Industrial carbon abatement allocations and regional collaboration: Re-evaluating China through a modified data envelopment analysis," Applied Energy, Elsevier, vol. 233, pages 232-243.
  • Handle: RePEc:eee:appene:v:233-234:y:2019:i::p:232-243
    DOI: 10.1016/j.apenergy.2018.10.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918315824
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.10.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Srivastava, Leena & Misra, Neha, 2007. "Promoting regional energy co-operation in South Asia," Energy Policy, Elsevier, vol. 35(6), pages 3360-3368, June.
    2. J. Timmer & P. Borm & J. Suijs, 2000. "Linear Transformation of Products: Games and Economies," Journal of Optimization Theory and Applications, Springer, vol. 105(3), pages 677-706, June.
    3. Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2016. "Potential gains from carbon emissions trading in China: A DEA based estimation on abatement cost savings," Omega, Elsevier, vol. 63(C), pages 48-59.
    4. Ramli, Noor Asiah & Munisamy, Susila, 2015. "Eco-efficiency in greenhouse emissions among manufacturing industries: A range adjusted measure," Economic Modelling, Elsevier, vol. 47(C), pages 219-227.
    5. Halkos, George Emm. & Tzeremes, Nickolaos G., 2009. "Exploring the existence of Kuznets curve in countries' environmental efficiency using DEA window analysis," Ecological Economics, Elsevier, vol. 68(7), pages 2168-2176, May.
    6. Choi, Yongrok & Zhang, Ning & Zhou, P., 2012. "Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure," Applied Energy, Elsevier, vol. 98(C), pages 198-208.
    7. Huda, Mirza Sadaqat & McDonald, Matt, 2016. "Regional cooperation on energy in South Asia: Unraveling the political challenges in implementing transnational pipelines and electricity grids," Energy Policy, Elsevier, vol. 98(C), pages 73-83.
    8. Zhou, P. & Ang, B.W., 2008. "Linear programming models for measuring economy-wide energy efficiency performance," Energy Policy, Elsevier, vol. 36(8), pages 2901-2906, August.
    9. Zhou, X. & Fan, L.W. & Zhou, P., 2015. "Marginal CO2 abatement costs: Findings from alternative shadow price estimates for Shanghai industrial sectors," Energy Policy, Elsevier, vol. 77(C), pages 109-117.
    10. Li, Huanan & Mu, Hailin & Zhang, Ming & Gui, Shusen, 2012. "Analysis of regional difference on impact factors of China’s energy – Related CO2 emissions," Energy, Elsevier, vol. 39(1), pages 319-326.
    11. Wang, Jian & Lv, Kangjuan & Bian, Yiwen & Cheng, Yu, 2017. "Energy efficiency and marginal carbon dioxide emission abatement cost in urban China," Energy Policy, Elsevier, vol. 105(C), pages 246-255.
    12. E G Gomes & M P E Lins, 2008. "Modelling undesirable outputs with zero sum gains data envelopment analysis models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(5), pages 616-623, May.
    13. Isabel Hilton & Oliver Kerr, 2017. "The Paris Agreement: China’s ‘New Normal’ role in international climate negotiations," Climate Policy, Taylor & Francis Journals, vol. 17(1), pages 48-58, January.
    14. Joe Zhu, 2014. "DEA Cross Efficiency," International Series in Operations Research & Management Science, in: Quantitative Models for Performance Evaluation and Benchmarking, edition 3, chapter 4, pages 61-92, Springer.
    15. Bian, Yiwen & Yang, Feng, 2010. "Resource and environment efficiency analysis of provinces in China: A DEA approach based on Shannon's entropy," Energy Policy, Elsevier, vol. 38(4), pages 1909-1917, April.
    16. Lozano, S. & Villa, G. & Brännlund, R., 2009. "Centralised reallocation of emission permits using DEA," European Journal of Operational Research, Elsevier, vol. 193(3), pages 752-760, March.
    17. Zhou, P. & Sun, Z.R. & Zhou, D.Q., 2014. "Optimal path for controlling CO2 emissions in China: A perspective of efficiency analysis," Energy Economics, Elsevier, vol. 45(C), pages 99-110.
    18. Sebastián Lozano & Gabriel Villa, 2004. "Centralized Resource Allocation Using Data Envelopment Analysis," Journal of Productivity Analysis, Springer, vol. 22(1), pages 143-161, July.
    19. Hu, Jin-Li & Wang, Shih-Chuan, 2006. "Total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 34(17), pages 3206-3217, November.
    20. Cui, Lian-Biao & Fan, Ying & Zhu, Lei & Bi, Qing-Hua, 2014. "How will the emissions trading scheme save cost for achieving China’s 2020 carbon intensity reduction target?," Applied Energy, Elsevier, vol. 136(C), pages 1043-1052.
    21. Feng, Chenpeng & Chu, Feng & Ding, Jingjing & Bi, Gongbing & Liang, Liang, 2015. "Carbon Emissions Abatement (CEA) allocation and compensation schemes based on DEA," Omega, Elsevier, vol. 53(C), pages 78-89.
    22. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "Measuring environmental performance under different environmental DEA technologies," Energy Economics, Elsevier, vol. 30(1), pages 1-14, January.
    23. Fang, Lei, 2013. "A generalized DEA model for centralized resource allocation," European Journal of Operational Research, Elsevier, vol. 228(2), pages 405-412.
    24. Du, Juan & Cook, Wade D. & Liang, Liang & Zhu, Joe, 2014. "Fixed cost and resource allocation based on DEA cross-efficiency," European Journal of Operational Research, Elsevier, vol. 235(1), pages 206-214.
    25. Beasley, J. E., 2003. "Allocating fixed costs and resources via data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 147(1), pages 198-216, May.
    26. Zhang, Yue-Jun & Wang, Ao-Dong & Da, Ya-Bin, 2014. "Regional allocation of carbon emission quotas in China: Evidence from the Shapley value method," Energy Policy, Elsevier, vol. 74(C), pages 454-464.
    27. Wang, Ke & Wei, Yi-Ming, 2014. "China’s regional industrial energy efficiency and carbon emissions abatement costs," Applied Energy, Elsevier, vol. 130(C), pages 617-631.
    28. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "Weak and strong disposability vs. natural and managerial disposability in DEA environmental assessment: Comparison between Japanese electric power industry and manufacturing industries," Energy Economics, Elsevier, vol. 34(3), pages 686-699.
    29. Wu, Jie & Zhu, Qingyuan & Liang, Liang, 2016. "CO2 emissions and energy intensity reduction allocation over provincial industrial sectors in China," Applied Energy, Elsevier, vol. 166(C), pages 282-291.
    30. Jie Wu & Qingyuan Zhu & Junfei Chu & Qingxian An & Liang Liang, 2016. "A DEA-based approach for allocation of emission reduction tasks," International Journal of Production Research, Taylor & Francis Journals, vol. 54(18), pages 5618-5633, September.
    31. Van Ha, Nguyen & Kant, Shashi & Maclaren, Virginia, 2008. "Shadow prices of environmental outputs and production efficiency of household-level paper recycling units in Vietnam," Ecological Economics, Elsevier, vol. 65(1), pages 98-110, March.
    32. Hao, Yu & Liu, Yiming & Weng, Jia-Hsi & Gao, Yixuan, 2016. "Does the Environmental Kuznets Curve for coal consumption in China exist? New evidence from spatial econometric analysis," Energy, Elsevier, vol. 114(C), pages 1214-1223.
    33. Lozano, S., 2013. "DEA production games," European Journal of Operational Research, Elsevier, vol. 231(2), pages 405-413.
    34. Burnett, J. Wesley & Bergstrom, John C. & Dorfman, Jeffrey H., 2013. "A spatial panel data approach to estimating U.S. state-level energy emissions," Energy Economics, Elsevier, vol. 40(C), pages 396-404.
    35. Wang, Ke & Wei, Yi-Ming & Zhang, Xian, 2013. "Energy and emissions efficiency patterns of Chinese regions: A multi-directional efficiency analysis," Applied Energy, Elsevier, vol. 104(C), pages 105-116.
    36. Zhou, P. & Zhou, X. & Fan, L.W., 2014. "On estimating shadow prices of undesirable outputs with efficiency models: A literature review," Applied Energy, Elsevier, vol. 130(C), pages 799-806.
    37. Wang, Ke & Wei, Yi-Ming & Zhang, Xian, 2012. "A comparative analysis of China’s regional energy and emission performance: Which is the better way to deal with undesirable outputs?," Energy Policy, Elsevier, vol. 46(C), pages 574-584.
    38. Jiang, Bing & Sun, Zhenqing & Liu, Meiqin, 2010. "China's energy development strategy under the low-carbon economy," Energy, Elsevier, vol. 35(11), pages 4257-4264.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qinliang Tan & Jin Zheng & Yihong Ding & Yimei Zhang, 2020. "Provincial Carbon Emission Quota Allocation Study in China from the Perspective of Abatement Cost and Regional Cooperation," Sustainability, MDPI, vol. 12(20), pages 1-20, October.
    2. Toshiyuki Sueyoshi & Mika Goto, 2020. "Performance Assessment of Japanese Electric Power Industry: DEA Measurement with Future Impreciseness," Energies, MDPI, vol. 13(2), pages 1-24, January.
    3. Yu, Anyu & Lee, Andy & Chen, Yao, 2021. "Carbon allocation targeting with abatement capability: A firm-level study," International Journal of Production Economics, Elsevier, vol. 235(C).
    4. Pritpal Singh & Gurdeep Singh & G. P. S. Sodhi, 2022. "Data envelopment analysis based optimization for improving net ecosystem carbon and energy budget in cotton (Gossypium hirsutum L.) cultivation: methods and a case study of north-western India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2079-2119, February.
    5. Xi Jin & Bin Zou & Chan Wang & Kaifeng Rao & Xiaowen Tang, 2019. "Carbon Emission Allocation in a Chinese Province-Level Region Based on Two-Stage Network Structures," Sustainability, MDPI, vol. 11(5), pages 1-24, March.
    6. Zhang, Yanfang & Wei, Jinpeng & Gao, Qi & Shi, Xunpeng & Zhou, Dequn, 2022. "Coordination between the energy-consumption permit trading scheme and carbon emissions trading: Evidence from China," Energy Economics, Elsevier, vol. 116(C).
    7. Yanan Guo & Qiong Tong & Zhengjiao Li & Yuhao Zhao, 2022. "Research on Carbon Emission Quota of Railway in China from the Perspective of Equity and Efficiency," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    8. Wu, Yinyin & Wang, Ping & Liu, Xin & Chen, Jiandong & Song, Malin, 2020. "Analysis of regional carbon allocation and carbon trading based on net primary productivity in China," China Economic Review, Elsevier, vol. 60(C).
    9. Fei, Rilong & Xie, Mengyuan & Wei, Xin & Ma, Ding, 2021. "Has the water rights system reform restrained the water rebound effect? Empirical analysis from China's agricultural sector," Agricultural Water Management, Elsevier, vol. 246(C).
    10. Dalai Ma & Yaping Xiao & Na Zhao, 2022. "Optimization and Spatiotemporal Differentiation of Carbon Emission Rights Allocation in the Power Industry in the Yangtze River Economic Belt," Sustainability, MDPI, vol. 14(9), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Jie & Zhu, Qingyuan & Liang, Liang, 2016. "CO2 emissions and energy intensity reduction allocation over provincial industrial sectors in China," Applied Energy, Elsevier, vol. 166(C), pages 282-291.
    2. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    3. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    4. Yu, Anyu & Lee, Andy & Chen, Yao, 2021. "Carbon allocation targeting with abatement capability: A firm-level study," International Journal of Production Economics, Elsevier, vol. 235(C).
    5. Kangjuan Lv & Anyu Yu & Yiwen Bian, 2017. "Regional energy efficiency and its determinants in China during 2001–2010: a slacks-based measure and spatial econometric analysis," Journal of Productivity Analysis, Springer, vol. 47(1), pages 65-81, February.
    6. Sueyoshi, Toshiyuki & Yuan, Yan, 2015. "China's regional sustainability and diversified resource allocation: DEA environmental assessment on economic development and air pollution," Energy Economics, Elsevier, vol. 49(C), pages 239-256.
    7. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    8. Sueyoshi, Toshiyuki & Yuan, Yan, 2016. "Returns to damage under undesirable congestion and damages to return under desirable congestion measured by DEA environmental assessment with multiplier restriction: Economic and energy planning for s," Energy Economics, Elsevier, vol. 56(C), pages 288-309.
    9. Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2016. "Potential gains from carbon emissions trading in China: A DEA based estimation on abatement cost savings," Omega, Elsevier, vol. 63(C), pages 48-59.
    10. He, Weijun & Yang, Yi & Wang, Zhaohua & Zhu, Joe, 2018. "Estimation and allocation of cost savings from collaborative CO2 abatement in China," Energy Economics, Elsevier, vol. 72(C), pages 62-74.
    11. Tao Ding & Ya Chen & Huaqing Wu & Yuqi Wei, 2018. "Centralized fixed cost and resource allocation considering technology heterogeneity: a DEA approach," Annals of Operations Research, Springer, vol. 268(1), pages 497-511, September.
    12. Jie Wu & Jun-Fei Chu & Liang Liang, 2016. "Target setting and allocation of carbon emissions abatement based on DEA and closest target: an application to 20 APEC economies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 279-296, November.
    13. Wang, Jian & Lv, Kangjuan & Bian, Yiwen & Cheng, Yu, 2017. "Energy efficiency and marginal carbon dioxide emission abatement cost in urban China," Energy Policy, Elsevier, vol. 105(C), pages 246-255.
    14. Meng, Fanyi & Su, Bin & Thomson, Elspeth & Zhou, Dequn & Zhou, P., 2016. "Measuring China’s regional energy and carbon emission efficiency with DEA models: A survey," Applied Energy, Elsevier, vol. 183(C), pages 1-21.
    15. Yiwen Bian & Kangjuan Lv & Anyu Yu, 2017. "China’s regional energy and carbon dioxide emissions efficiency evaluation with the presence of recovery energy: an interval slacks-based measure approach," Annals of Operations Research, Springer, vol. 255(1), pages 301-321, August.
    16. Mahdiloo, Mahdi & Ngwenyama, Ojelanki & Scheepers, Rens & Tamaddoni, Ali, 2018. "Managing emissions allowances of electricity producers to maximize CO2 abatement: DEA models for analyzing emissions and allocating emissions allowances," International Journal of Production Economics, Elsevier, vol. 205(C), pages 244-255.
    17. Jie Wu & Qingyuan Zhu & Junfei Chu & Qingxian An & Liang Liang, 2016. "A DEA-based approach for allocation of emission reduction tasks," International Journal of Production Research, Taylor & Francis Journals, vol. 54(18), pages 5618-5633, September.
    18. Feng Li & Qingyuan Zhu & Liang Liang, 2019. "A new data envelopment analysis based approach for fixed cost allocation," Annals of Operations Research, Springer, vol. 274(1), pages 347-372, March.
    19. Bian, Yiwen & He, Ping & Xu, Hao, 2013. "Estimation of potential energy saving and carbon dioxide emission reduction in China based on an extended non-radial DEA approach," Energy Policy, Elsevier, vol. 63(C), pages 962-971.
    20. Zhou, P. & Wang, M., 2016. "Carbon dioxide emissions allocation: A review," Ecological Economics, Elsevier, vol. 125(C), pages 47-59.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:233-234:y:2019:i::p:232-243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.