IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v88y2011i3p599-611.html
   My bibliography  Save this item

Planning regional energy system in association with greenhouse gas mitigation under uncertainty

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yang, Kun & Ding, Yan & Zhu, Neng & Yang, Fan & Wang, Qiaochu, 2018. "Multi-criteria integrated evaluation of distributed energy system for community energy planning based on improved grey incidence approach: A case study in Tianjin," Applied Energy, Elsevier, vol. 229(C), pages 352-363.
  2. Li, G.C. & Huang, G.H. & Sun, W. & Ding, X.W., 2014. "An inexact optimization model for energy-environment systems management in the mixed fuzzy, dual-interval and stochastic environment," Renewable Energy, Elsevier, vol. 64(C), pages 153-163.
  3. Zhang, Qi & Li, Zhan & Wang, Ge & Li, Hailong, 2016. "Study on the impacts of natural gas supply cost on gas flow and infrastructure deployment in China," Applied Energy, Elsevier, vol. 162(C), pages 1385-1398.
  4. Lu, Heli & Liu, Guifang, 2014. "Spatial effects of carbon dioxide emissions from residential energy consumption: A county-level study using enhanced nocturnal lighting," Applied Energy, Elsevier, vol. 131(C), pages 297-306.
  5. Parkinson, Simon C. & Djilali, Ned, 2015. "Long-term energy planning with uncertain environmental performance metrics," Applied Energy, Elsevier, vol. 147(C), pages 402-412.
  6. Wu, Zhibin & Xu, Jiuping, 2013. "Predicting and optimization of energy consumption using system dynamics-fuzzy multiple objective programming in world heritage areas," Energy, Elsevier, vol. 49(C), pages 19-31.
  7. Guangxiao Hu & Xiaoming Ma & Junping Ji, 2017. "A Stochastic Optimization Model for Carbon Mitigation Path under Demand Uncertainty of the Power Sector in Shenzhen, China," Sustainability, MDPI, vol. 9(11), pages 1-12, October.
  8. Zhou, Y. & Li, Y.P. & Huang, G.H., 2015. "Planning sustainable electric-power system with carbon emission abatement through CDM under uncertainty," Applied Energy, Elsevier, vol. 140(C), pages 350-364.
  9. Wu, Gang & Liu, Lan-Cui & Han, Zhi-Yong & Wei, Yi-Ming, 2012. "Climate protection and China’s energy security: Win–win or tradeoff," Applied Energy, Elsevier, vol. 97(C), pages 157-163.
  10. Kim, Dowon & Ryu, Heelang & Lee, Jiwoong & Kim, Kyoung-Kuk, 2022. "Balancing risk: Generation expansion planning under climate mitigation scenarios," European Journal of Operational Research, Elsevier, vol. 297(2), pages 665-679.
  11. Jin, S.W. & Li, Y.P. & Huang, G.H. & Nie, S., 2018. "Analyzing the performance of clean development mechanism for electric power systems under uncertain environment," Renewable Energy, Elsevier, vol. 123(C), pages 382-397.
  12. Tolis, Athanasios I. & Rentizelas, Athanasios A., 2011. "An impact assessment of electricity and emission allowances pricing in optimised expansion planning of power sector portfolios," Applied Energy, Elsevier, vol. 88(11), pages 3791-3806.
  13. Nie, S. & Huang, Z.C. & Huang, G.H. & Yu, L. & Liu, J., 2018. "Optimization of electric power systems with cost minimization and environmental-impact mitigation under multiple uncertainties," Applied Energy, Elsevier, vol. 221(C), pages 249-267.
  14. Zhu, Y. & Li, Y.P. & Huang, G.H., 2012. "Planning municipal-scale energy systems under functional interval uncertainties," Renewable Energy, Elsevier, vol. 39(1), pages 71-84.
  15. Han, Jee-Hoon & Ahn, Yu-Chan & Lee, In-Beum, 2012. "A multi-objective optimization model for sustainable electricity generation and CO2 mitigation (EGCM) infrastructure design considering economic profit and financial risk," Applied Energy, Elsevier, vol. 95(C), pages 186-195.
  16. Patrizio, P. & Leduc, S. & Chinese, D. & Kraxner, F., 2017. "Internalizing the external costs of biogas supply chains in the Italian energy sector," Energy, Elsevier, vol. 125(C), pages 85-96.
  17. Dianzheng Fu & Tianji Yang & Yize Huang & Yiming Tong, 2022. "Integrated Optimization for Biofuel Management Associated with a Biomass-Penetrated Heating System under Multiple and Compound Uncertainties," Energies, MDPI, vol. 15(15), pages 1-21, July.
  18. Piao, M.J. & Li, Y.P. & Huang, G.H. & Nie, S., 2015. "Risk analysis for Shanghai's electric power system under multiple uncertainties," Energy, Elsevier, vol. 87(C), pages 104-119.
  19. Jin, L. & Huang, G.H. & Fan, Y.R. & Wang, L. & Wu, T., 2015. "A pseudo-optimal inexact stochastic interval T2 fuzzy sets approach for energy and environmental systems planning under uncertainty: A case study for Xiamen City of China," Applied Energy, Elsevier, vol. 138(C), pages 71-90.
  20. Song, Tangnyu & Huang, Guohe & Zhou, Xiong & Wang, Xiuquan, 2018. "An inexact two-stage fractional energy systems planning model," Energy, Elsevier, vol. 160(C), pages 275-289.
  21. Zhu, Y. & Huang, G.H. & Li, Y.P. & He, L. & Zhang, X.X., 2011. "An interval full-infinite mixed-integer programming method for planning municipal energy systems - A case study of Beijing," Applied Energy, Elsevier, vol. 88(8), pages 2846-2862, August.
  22. Xie, Y.L. & Huang, G.H. & Li, W. & Ji, L., 2014. "Carbon and air pollutants constrained energy planning for clean power generation with a robust optimization model—A case study of Jining City, China," Applied Energy, Elsevier, vol. 136(C), pages 150-167.
  23. Cosmi, Carmelina & Dvarionenė, Jolanta & Marques, Isabel & Di Leo, Senatro & Gecevičius, Giedrius & Gurauskienė, Inga & Mendes, Gisela & Selada, Catarina, 2015. "A holistic approach to sustainable energy development at regional level: The RENERGY self-assessment methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 693-707.
  24. Zhu, Y. & Li, Y.P. & Huang, G.H. & Fu, D.Z., 2013. "Modeling for planning municipal electric power systems associated with air pollution control – A case study of Beijing," Energy, Elsevier, vol. 60(C), pages 168-186.
  25. Han, Jee-Hoon & Lee, In-Beum, 2011. "Development of a scalable infrastructure model for planning electricity generation and CO2 mitigation strategies under mandated reduction of GHG emission," Applied Energy, Elsevier, vol. 88(12), pages 5056-5068.
  26. Akorede, M.F. & Hizam, H. & Ab Kadir, M.Z.A. & Aris, I. & Buba, S.D., 2012. "Mitigating the anthropogenic global warming in the electric power industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2747-2761.
  27. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S. & Kopanos, Georgios M. & Pistikopoulos, Efstratios N. & Georgiadis, Michael C., 2014. "A spatial multi-period long-term energy planning model: A case study of the Greek power system," Applied Energy, Elsevier, vol. 115(C), pages 456-482.
  28. Hou, Rui & Deng, Guangzhi & Wu, Minrong & Wang, Wei & Gao, Wei & Chen, Kang & Liu, Lijun & Dehan, Sim, 2023. "Optimum exploitation of an integrated energy system considering renewable sources and power-heat system and energy storage," Energy, Elsevier, vol. 282(C).
  29. Zhai, Mengyu & Huang, Guohe & Liu, Lirong & Zheng, Boyue & Guan, Yuru, 2020. "Inter-regional carbon flows embodied in electricity transmission: network simulation for energy-carbon nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
  30. Welsch, M. & Hermann, S. & Howells, M. & Rogner, H.H. & Young, C. & Ramma, I. & Bazilian, M. & Fischer, G. & Alfstad, T. & Gielen, D. & Le Blanc, D. & Röhrl, A. & Steduto, P. & Müller, A., 2014. "Adding value with CLEWS – Modelling the energy system and its interdependencies for Mauritius," Applied Energy, Elsevier, vol. 113(C), pages 1434-1445.
  31. Viholainen, Juha & Luoranen, Mika & Väisänen, Sanni & Niskanen, Antti & Horttanainen, Mika & Soukka, Risto, 2016. "Regional level approach for increasing energy efficiency," Applied Energy, Elsevier, vol. 163(C), pages 295-303.
  32. Seck, Gondia Sokhna & Guerassimoff, Gilles & Maïzi, Nadia, 2013. "Heat recovery with heat pumps in non-energy intensive industry: A detailed bottom-up model analysis in the French food & drink industry," Applied Energy, Elsevier, vol. 111(C), pages 489-504.
  33. Yulei Xie & Linrui Wang & Guohe Huang & Dehong Xia & Ling Ji, 2018. "A Stochastic Inexact Robust Model for Regional Energy System Management and Emission Reduction Potential Analysis—A Case Study of Zibo City, China," Energies, MDPI, vol. 11(8), pages 1-24, August.
  34. Li, Y.P. & Huang, G.H. & Li, M.W., 2014. "An integrated optimization modeling approach for planning emission trading and clean-energy development under uncertainty," Renewable Energy, Elsevier, vol. 62(C), pages 31-46.
  35. Mirakyan, Atom & De Guio, Roland, 2015. "Modelling and uncertainties in integrated energy planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 62-69.
  36. Tavana, Madjid & Khosrojerdi, Ghasem & Mina, Hassan & Rahman, Amirah, 2019. "A hybrid mathematical programming model for optimal project portfolio selection using fuzzy inference system and analytic hierarchy process," Evaluation and Program Planning, Elsevier, vol. 77(C).
  37. Zhu, H. & Huang, W.W. & Huang, G.H., 2014. "Planning of regional energy systems: An inexact mixed-integer fractional programming model," Applied Energy, Elsevier, vol. 113(C), pages 500-514.
  38. J. Magnier, Hamza & Jrad, Asmaa, 2019. "A minimal simplified model for assessing and devising global LNG equilibrium trade portfolios while maximizing energy security," Energy, Elsevier, vol. 173(C), pages 1221-1233.
  39. Chen, F. & Huang, G.H. & Fan, Y.R. & Chen, J.P., 2017. "A copula-based fuzzy chance-constrained programming model and its application to electric power generation systems planning," Applied Energy, Elsevier, vol. 187(C), pages 291-309.
  40. D. Fu & Y. Li & G. Huang, 2013. "A Factorial-based Dynamic Analysis Method for Reservoir Operation Under Fuzzy-stochastic Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4591-4610, October.
  41. Buchholz, Stefanie & Gamst, Mette & Pisinger, David, 2020. "Sensitivity analysis of time aggregation techniques applied to capacity expansion energy system models," Applied Energy, Elsevier, vol. 269(C).
  42. Guan, Panbo & Huang, Guohe & Wu, Chuanbao & Wang, Linrui & Li, Chaoci & Wang, Yuanyi, 2019. "Analysis of emission taxes levying on regional electric power structure adjustment with an inexact optimization model - A case study of Zibo, China," Energy Economics, Elsevier, vol. 84(C).
  43. Tonini, Davide & Astrup, Thomas, 2012. "LCA of biomass-based energy systems: A case study for Denmark," Applied Energy, Elsevier, vol. 99(C), pages 234-246.
  44. Jin, S.W. & Li, Y.P. & Nie, S. & Sun, J., 2017. "The potential role of carbon capture and storage technology in sustainable electric-power systems under multiple uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 467-480.
  45. Geng, Jiang-Bo & Ji, Qiang & Fan, Ying, 2014. "A dynamic analysis on global natural gas trade network," Applied Energy, Elsevier, vol. 132(C), pages 23-33.
  46. Tsai, Ming-Tang & Yen, Chih-Wei, 2011. "The influence of carbon dioxide trading scheme on economic dispatch of generators," Applied Energy, Elsevier, vol. 88(12), pages 4811-4816.
  47. Chen, C. & Li, Y.P. & Huang, G.H., 2013. "An inexact robust optimization method for supporting carbon dioxide emissions management in regional electric-power systems," Energy Economics, Elsevier, vol. 40(C), pages 441-456.
  48. Wang, Xingwei & Cai, Yanpeng & Chen, Jiajun & Dai, Chao, 2013. "A grey-forecasting interval-parameter mixed-integer programming approach for integrated electric-environmental management–A case study of Beijing," Energy, Elsevier, vol. 63(C), pages 334-344.
  49. Tang, Bao-Jun & Li, Ru & Li, Xiao-Yi & Chen, Hao, 2017. "An optimal production planning model of coal-fired power industry in China: Considering the process of closing down inefficient units and developing CCS technologies," Applied Energy, Elsevier, vol. 206(C), pages 519-530.
  50. Chen, C. & Li, Y.P. & Huang, G.H. & Zhu, Y., 2012. "An inexact robust nonlinear optimization method for energy systems planning under uncertainty," Renewable Energy, Elsevier, vol. 47(C), pages 55-66.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.