IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i8p2846-2862.html
   My bibliography  Save this article

An interval full-infinite mixed-integer programming method for planning municipal energy systems - A case study of Beijing

Author

Listed:
  • Zhu, Y.
  • Huang, G.H.
  • Li, Y.P.
  • He, L.
  • Zhang, X.X.

Abstract

In this study, an interval full-infinite mixed-integer municipal-scale energy model (IFMI-MEM) is developed for planning energy systems of Beijing. IFMI-MEM is based on an integration of existing interval-parameter programming (IPP), mixed-integer linear programming (MILP) and full-infinite programming (FIP) techniques. IFMI-MEM allows uncertainties expressed as determinates, crisp interval values and functional intervals to be incorporated within a general optimization framework. It can also facilitate capacity-expansion planning for energy-production facilities within a multi-period and multi-option context. Then, IFMI-MEM is applied to a real case study of energy systems planning in Beijing. The results indicate that reasonable solutions have been generated. They are helpful for supporting (a) adjustment of the existing demand and supply patterns of energy resources, (b) facilitation of dynamic analysis for decisions of capacity expansion and/or development planning, and (c) coordination of the conflict interactions among economic cost, system efficiency, pollutant mitigation and energy-supply security.

Suggested Citation

  • Zhu, Y. & Huang, G.H. & Li, Y.P. & He, L. & Zhang, X.X., 2011. "An interval full-infinite mixed-integer programming method for planning municipal energy systems - A case study of Beijing," Applied Energy, Elsevier, vol. 88(8), pages 2846-2862, August.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:8:p:2846-2862
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(11)00076-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vaz, A. Ismael F. & Fernandes, Edite M. G. P. & Gomes, M. Paula S. F., 2004. "Robot trajectory planning with semi-infinite programming," European Journal of Operational Research, Elsevier, vol. 153(3), pages 607-617, March.
    2. Stein, Oliver & Still, Georg, 2002. "On generalized semi-infinite optimization and bilevel optimization," European Journal of Operational Research, Elsevier, vol. 142(3), pages 444-462, November.
    3. Albrecht, Johan, 2007. "The future role of photovoltaics: A learning curve versus portfolio perspective," Energy Policy, Elsevier, vol. 35(4), pages 2296-2304, April.
    4. Sadeghi, Mehdi & Mirshojaeian Hosseini, Hossein, 2006. "Energy supply planning in Iran by using fuzzy linear programming approach (regarding uncertainties of investment costs)," Energy Policy, Elsevier, vol. 34(9), pages 993-1003, June.
    5. Kannan, Ramachandran & Strachan, Neil, 2009. "Modelling the UK residential energy sector under long-term decarbonisation scenarios: Comparison between energy systems and sectoral modelling approaches," Applied Energy, Elsevier, vol. 86(4), pages 416-428, April.
    6. van Beeck, Nicole & Doukas, Haris & Gioria, Michel & Karakosta, Charikleia & Psarras, John, 2009. "Energy RTD expenditures in the European union: Data gathering procedures and results towards a scientific reference system," Applied Energy, Elsevier, vol. 86(4), pages 452-459, April.
    7. Zhang, Yan & Yang, Zhifeng & Yu, Xiangyi, 2009. "Evaluation of urban metabolism based on emergy synthesis: A case study for Beijing (China)," Ecological Modelling, Elsevier, vol. 220(13), pages 1690-1696.
    8. Frei, Christoph W. & Haldi, Pierre-Andre & Sarlos, Gerard, 2003. "Dynamic formulation of a top-down and bottom-up merging energy policy model," Energy Policy, Elsevier, vol. 31(10), pages 1017-1031, August.
    9. Asif, M. & Muneer, T., 2007. "Energy supply, its demand and security issues for developed and emerging economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1388-1413, September.
    10. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "Planning regional energy system in association with greenhouse gas mitigation under uncertainty," Applied Energy, Elsevier, vol. 88(3), pages 599-611, March.
    11. Nfah, E.M. & Ngundam, J.M. & Tchinda, R., 2007. "Modelling of solar/diesel/battery hybrid power systems for far-north Cameroon," Renewable Energy, Elsevier, vol. 32(5), pages 832-844.
    12. Chaabene, Maher & Ammar, Mohsen Ben & Elhajjaji, Ahmed, 2007. "Fuzzy approach for optimal energy-management of a domestic photovoltaic panel," Applied Energy, Elsevier, vol. 84(10), pages 992-1001, October.
    13. Zoulias, E.I. & Lymberopoulos, N., 2007. "Techno-economic analysis of the integration of hydrogen energy technologies in renewable energy-based stand-alone power systems," Renewable Energy, Elsevier, vol. 32(4), pages 680-696.
    14. Goberna, M.A. & Gomez, S. & Guerra, F. & Todorov, M.I., 2007. "Sensitivity analysis in linear semi-infinite programming: Perturbing cost and right-hand-side coefficients," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1069-1085, September.
    15. Matthias Nowak & Werner Römisch, 2000. "Stochastic Lagrangian Relaxation Applied to Power Scheduling in a Hydro-Thermal System under Uncertainty," Annals of Operations Research, Springer, vol. 100(1), pages 251-272, December.
    16. Mavrotas, George & Diakoulaki, Danae & Florios, Kostas & Georgiou, Paraskevas, 2008. "A mathematical programming framework for energy planning in services' sector buildings under uncertainty in load demand: The case of a hospital in Athens," Energy Policy, Elsevier, vol. 36(7), pages 2415-2429, July.
    17. Lin, Q.G. & Huang, G.H. & Bass, B. & Qin, X.S., 2009. "IFTEM: An interval-fuzzy two-stage stochastic optimization model for regional energy systems planning under uncertainty," Energy Policy, Elsevier, vol. 37(3), pages 868-878, March.
    18. Möllersten, K. & Yan, J. & Westermark, M., 2003. "Potential and cost-effectiveness of CO2 reductions through energy measures in Swedish pulp and paper mills," Energy, Elsevier, vol. 28(7), pages 691-710.
    19. Huang, Guo H. & Baetz, Brian W. & Patry, Gilles G., 1995. "Grey integer programming: An application to waste management planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 83(3), pages 594-620, June.
    20. Weber, Reinhard, 1985. "Decision making under uncertainty: A semi-infinite programming approach," European Journal of Operational Research, Elsevier, vol. 19(1), pages 104-113, January.
    21. Goberna, M. A. & Lopez, M. A., 2002. "Linear semi-infinite programming theory: An updated survey," European Journal of Operational Research, Elsevier, vol. 143(2), pages 390-405, December.
    22. Tolis, Athanasios & Doukelis, Aggelos & Tatsiopoulos, Ilias, 2010. "Stochastic interest rates in the analysis of energy investments: Implications on economic performance and sustainability," Applied Energy, Elsevier, vol. 87(8), pages 2479-2490, August.
    23. Aydinalp-Koksal, Merih & Ugursal, V. Ismet, 2008. "Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector," Applied Energy, Elsevier, vol. 85(4), pages 271-296, April.
    24. Geletu, Abebe & Hoffmann, Armin, 2004. "A conceptual method for solving generalized semi-infinite programming problems via global optimization by exact discontinuous penalization," European Journal of Operational Research, Elsevier, vol. 157(1), pages 3-15, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Y. & Li, Y.P. & Huang, G.H., 2012. "Planning municipal-scale energy systems under functional interval uncertainties," Renewable Energy, Elsevier, vol. 39(1), pages 71-84.
    2. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Tan, Q., 2009. "Identification of optimal strategies for energy management systems planning under multiple uncertainties," Applied Energy, Elsevier, vol. 86(4), pages 480-495, April.
    3. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "Planning regional energy system in association with greenhouse gas mitigation under uncertainty," Applied Energy, Elsevier, vol. 88(3), pages 599-611, March.
    4. Li, Y.F. & Li, Y.P. & Huang, G.H. & Chen, X., 2010. "Energy and environmental systems planning under uncertainty--An inexact fuzzy-stochastic programming approach," Applied Energy, Elsevier, vol. 87(10), pages 3189-3211, October.
    5. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Lin, Q.G. & Tan, Q., 2009. "Community-scale renewable energy systems planning under uncertainty--An interval chance-constrained programming approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 721-735, May.
    6. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    7. Zhu, Y. & Li, Y.P. & Huang, G.H. & Fu, D.Z., 2013. "Modeling for planning municipal electric power systems associated with air pollution control – A case study of Beijing," Energy, Elsevier, vol. 60(C), pages 168-186.
    8. Chen, C. & Li, Y.P. & Huang, G.H. & Zhu, Y., 2012. "An inexact robust nonlinear optimization method for energy systems planning under uncertainty," Renewable Energy, Elsevier, vol. 47(C), pages 55-66.
    9. Lin, Q.G. & Huang, G.H., 2009. "A dynamic inexact energy systems planning model for supporting greenhouse-gas emission management and sustainable renewable energy development under uncertainty--A case study for the City of Waterloo,," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1836-1853, October.
    10. Suberu, Mohammed Yekini & Mustafa, Mohd Wazir & Bashir, Nouruddeen & Muhamad, Nor Asiah & Mokhtar, Ahmad Safawi, 2013. "Power sector renewable energy integration for expanding access to electricity in sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 630-642.
    11. Cai, Y.P. & Huang, G.H. & Tan, Q. & Yang, Z.F., 2009. "Planning of community-scale renewable energy management systems in a mixed stochastic and fuzzy environment," Renewable Energy, Elsevier, vol. 34(7), pages 1833-1847.
    12. Dong, C. & Huang, G.H. & Cai, Y.P. & Liu, Y., 2012. "An inexact optimization modeling approach for supporting energy systems planning and air pollution mitigation in Beijing city," Energy, Elsevier, vol. 37(1), pages 673-688.
    13. He, Li & Huang, Guo H. & Lu, Hongwei, 2011. "Bivariate interval semi-infinite programming with an application to environmental decision-making analysis," European Journal of Operational Research, Elsevier, vol. 211(3), pages 452-465, June.
    14. P. Guo & G. Huang & L. He & H. Zhu, 2009. "Interval-parameter Two-stage Stochastic Semi-infinite Programming: Application to Water Resources Management under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 1001-1023, March.
    15. Ekren, Orhan & Ekren, Banu Y., 2010. "Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing," Applied Energy, Elsevier, vol. 87(2), pages 592-598, February.
    16. Wang, Xingwei & Cai, Yanpeng & Chen, Jiajun & Dai, Chao, 2013. "A grey-forecasting interval-parameter mixed-integer programming approach for integrated electric-environmental management–A case study of Beijing," Energy, Elsevier, vol. 63(C), pages 334-344.
    17. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "An interval-valued minimax-regret analysis approach for the identification of optimal greenhouse-gas abatement strategies under uncertainty," Energy Policy, Elsevier, vol. 39(7), pages 4313-4324, July.
    18. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    19. Kassian T.T. Amesho & Emmanuel Innocents Edoun, 2019. "Financing Renewable Energy in Namibia - A Fundamental Key Challenge to the Sustainable Development Goal 7: Ensuring Access to Affordable, Reliable, Sustainable and Modern Energy for All," International Journal of Energy Economics and Policy, Econjournals, vol. 9(5), pages 442-450.
    20. Cao, M.F. & Huang, G.H. & Lin, Q.G., 2010. "Integer programming with random-boundary intervals for planning municipal power systems," Applied Energy, Elsevier, vol. 87(8), pages 2506-2516, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:8:p:2846-2862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.