Advanced Search
MyIDEAS: Login

Evaluating Density Forecasts with an Application to Stock Market Returns

Contents:

Author Info

  • Raunig, Burkhard
  • de Raaij, Gabriela
Registered author(s):

    Abstract

    Density forecasts have become quite important in economics and finance. For example, such forecasts play a central role in modern financial risk management techniques like Value at Risk. This paper suggests a regression based density forecast evaluation framework as a simple alternative to other approaches. In simulation experiments and an empirical application to in- and out-of-sample one-step-ahead density forecasts of daily returns on the S&P 500, DAX and ATX stock market indices, the regression based evaluation strategy is compared with a recently proposed methodology based on likelihood ratio tests. It is demonstrated that misspecifications of forecasting models can be detected within the proposed regression framework. It is further demonstrated that the likelihood ratio methodology without additional misspecification tests has no power in many practical situations and therefore frequently selects incorrect forecasting models. The empirical results provide some evidence that GARCH-t models provide good density forecasts. The results further suggest that extensions of statistical models with fat-tailed conditional distributions to models that incorporate higher order conditional moments beyond the conditional variance might be appropriate to capture the empirical regularities in financial time series in some cases. -- Die Voraussagen von Dichten ist in verschiedenen ökonomischen Fragestellungen sehr wichtig geworden. Solche Voraussagen spielen zum Beispiel eine wichtige Rolle bei modernen Methoden des Risikomanagements im Finanzsektor. Dieses Papier schlägt vor, Dichte-Prognosen mithilfe einer Methode zu beurteilen, die auf einem Regressionsansatz beruht. In Simulationsexperimenten und empirischen Anwendungen auf Dichte-Prognosen für tägliche Erträge verschiedener Aktienindices (S&P 500, DAX, ATX) wird diese Methode mit einer verglichen, die auf likelihood ratio Tests beruht und die erst neulich vorgeschlagen wurde. Es zeigt sich, dass Fehlspezifikationen der Prognosemodelle mithilfe der hier vorgeschlagenen Methode entdeckt werden können. Dagegen hat die Methode, die auf likelihood ratio Test beruht, ohne zusätzliche Tests auf Fehlspezifikation in vielen praktischen Fällen keine Macht. Die empirischen Ergebnisse deuten darauf hin, dass GARCH-t-Modelle gute Dichte-Prognosen liefern. Weiterhin wird gezeigt, dass Erweiterungen von statistischen Modellen mit Verteilungen mit dicken Enden zu Modellen, die höhere Momente einbeziehen, geeignet sein können, um in manchen Fällen empirische Regelmäßigkeiten in Finanzzeitreihen abzubilden.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://econstor.eu/bitstream/10419/19565/1/200208dkp.pdf
    Download Restriction: no

    Bibliographic Info

    Paper provided by Deutsche Bundesbank, Research Centre in its series Discussion Paper Series 1: Economic Studies with number 2002,08.

    as in new window
    Length:
    Date of creation: 2002
    Date of revision:
    Handle: RePEc:zbw:bubdp1:4173

    Contact details of provider:
    Postal: Postfach 10 06 02, 60006 Frankfurt
    Phone: 0 69 / 95 66 - 34 55
    Fax: 0 69 / 95 66 30 77
    Email:
    Web page: http://www.bundesbank.de/
    More information through EDIRC

    Related research

    Keywords: Density forecasting; Forecast evaluation; Risk management; GARCH-models;

    Find related papers by JEL classification:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:zbw:bubdp1:4173. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.