Advanced Search
MyIDEAS: Login

UK Macroeconomic Forecasting with Many Predictors: Which Models Forecast Best and When Do They Do So?

Contents:

Author Info

  • Gary Koop

    ()
    (Department of Economics, University of Strathclyde)

  • Dimitris Korobilis

    ()
    (Center for Operations Research & Econometrics (CORE), Universite Catholique de Louvain)

Abstract

Block factor methods offer an attractive approach to forecasting with many predictors. These extract the information in these predictors into factors reflecting different blocks of variables (e.g. a price block, a housing block, a financial block, etc.). However, a forecasting model which simply includes all blocks as predictors risks being over-parameterized. Thus, it is desirable to use a methodology which allows for different parsimonious forecasting models to hold at different points in time. In this paper, we use dynamic model averaging and dynamic model selection to achieve this goal. These methods automatically alter the weights attached to different forecasting model as evidence comes in about which has forecast well in the recent past. In an empirical study involving forecasting output and inflation using 139 UK monthly time series variables, we find that the set of predictors changes substantially over time. Furthermore, our results show that dynamic model averaging and model selection can greatly improve forecast performance relative to traditional forecasting methods.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.strath.ac.uk/media/departments/economics/researchdiscussionpapers/2011/11-18_Final.pdf
Download Restriction: no

Bibliographic Info

Paper provided by University of Strathclyde Business School, Department of Economics in its series Working Papers with number 1118.

as in new window
Length: 31 pages
Date of creation: Apr 2011
Date of revision:
Handle: RePEc:str:wpaper:1118

Contact details of provider:
Postal: Sir William Duncan Building, 130 Rottenrow, Glasgow G4 0GE
Phone: +44 (0)141 548 3842
Fax: +44 (0)141 548 4445
Email:
Web page: http://www.strath.ac.uk/economics/
More information through EDIRC

Related research

Keywords: Bayesian; state space model; factor model; dynamic model averaging;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Gary Koop & Dimitris Korobilis, 2011. "Forecasting Inflation Using Dynamic Model Averaging," Working Papers 1119, University of Strathclyde Business School, Department of Economics.
  2. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
  3. Timothy Cogley & Thomas Sargent, . "Drifts and Volatilities: Monetary Policies and Outcomes in the Post WWII US," Working Papers 2133503, Department of Economics, W. P. Carey School of Business, Arizona State University.
  4. Pesaran, M Hashem & Timmermann, Allan, 1995. " Predictability of Stock Returns: Robustness and Economic Significance," Journal of Finance, American Finance Association, vol. 50(4), pages 1201-28, September.
  5. John Geweke & Gianni Amisano, 2011. "Hierarchical Markov normal mixture models with applications to financial asset returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(1), pages 1-29, January/F.
  6. Bauwens, Luc & Koop, Gary & Korobilis, Dimitris & Rombouts, Jeroen V.K., 2011. "A Comparison Of Forecasting Procedures For Macroeconomic Series: The Contribution Of Structural Break Models," SIRE Discussion Papers 2011-33, Scottish Institute for Research in Economics (SIRE).
  7. Jan J. J. Groen & Richard Paap & Francesco Ravazzolo, 2009. "Real-time inflation forecasting in a changing world," Staff Reports 388, Federal Reserve Bank of New York.
  8. Cogley, Timothy W. & Morozov, Sergei & Sargent, Thomas J., 2003. "Bayesian fan charts for UK inflation: Forecasting and sources of uncertainty in an evolving monetary system," CFS Working Paper Series 2003/44, Center for Financial Studies (CFS).
  9. James H. Stock & Mark W. Watson, 2006. "Why Has U.S. Inflation Become Harder to Forecast?," NBER Working Papers 12324, National Bureau of Economic Research, Inc.
  10. James H. Stock & Mark W. Watson, 1994. "Evidence on Structural Instability in Macroeconomic Time Series Relations," NBER Technical Working Papers 0164, National Bureau of Economic Research, Inc.
  11. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-62, April.
  12. Kapetanios, George & Labhard, Vincent & Price, Simon, 2008. "Forecast combination and the Bank of England's suite of statistical forecasting models," Economic Modelling, Elsevier, vol. 25(4), pages 772-792, July.
  13. Rong Chen & Jun S. Liu, 2000. "Mixture Kalman filters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(3), pages 493-508.
  14. James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
  15. Emanuel Moench & Serena Ng & Simon Potter, 2009. "Dynamic hierarchical factor models," Staff Reports 412, Federal Reserve Bank of New York.
  16. Gary Koop & Simon M. Potter, 2007. "Estimation and Forecasting in Models with Multiple Breaks," Review of Economic Studies, Oxford University Press, vol. 74(3), pages 763-789.
  17. Gary Koop & Simon Potter, 2004. "Forecasting in dynamic factor models using Bayesian model averaging," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 550-565, December.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Nombulelo Gumata, Alain Kabundi and Eliphas Ndou, 2013. "Important Channels of Transmission Monetary Policy Shock in South Africa," Working Papers 375, Economic Research Southern Africa.
  2. Rangan Gupta & Shawkat Hammoudeh & Won Joong Kim & Beatrice D. Simo-Kengne, 2013. "Forecasting China’s Foreign Exchange Reserves Using Dynamic Model Averaging: The Role of Macroeconomic Fundamentals, Financial Stress and Economic Uncertainty," Working Papers 201338, University of Pretoria, Department of Economics.
  3. Goodness C. Aye & Rangan Gupta, 2013. "Forecasting the US Real Private Residential Fixed Investment Using Large Number of Predictors," Working Papers 201348, University of Pretoria, Department of Economics.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:str:wpaper:1118. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Kirsty Hall).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.