Advanced Search
MyIDEAS: Login to save this paper or follow this series

Hierarchical Markov Normal Mixture Models with Applications to Financial Asset Returns

Contents:

Author Info

  • John Geweke
  • Gianni Amisano

Abstract

Motivated by the common problem of constructing predictive distributions for daily asset returns over horizons of one to several trading days, this article introduces a new model for time series. This model is a generalization of the Markov normal mixture model in which the mixture components are themselves normal mixtures, and it is a specific case of an artificial neural network model with two hidden layers. The article characterizes the implications of the model for time series in two ways. First, it derives the restrictions placed on the autocovariance function and linear representation of integer powers of the time series in terms of the number of components in the mixture and the roots of the Markov process. Second, it uses the prior predictive distribution of the model to study the implications of the model for some interesting functions of asset returns. The article uses the model to construct predictive distributions of daily S&P 500 returns 1971-2005, US dollar - UK pound returns 1972-1998, and one- and ten-year maturity bonds 1987-2006. It compares the performance of the model for these returns with ARCH and stochastic volatility models using the predictive likelihood function. The model's performance is about the same as its competitors for the bond returns, better than its competitors for the S&P 500 returns, and much better than its competitors for the dollar-pound returns. In and out of sample validation exercises with predictive distributions identify some remaining deficiencies in the model and suggest potential improvements. The article concludes by using the model to form predictive distributions of one- to ten-day returns during volatile episodes for the S&P 500, dollar-pound and bond return series.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.unibs.it/on-line/dse/Home/Inevidenza/PaperdelDipartimento/documento4574.html
Our checks indicate that this address may not be valid because: 404 Not Found. If this is indeed the case, please notify (Matteo Galizzi)
Download Restriction: no

Bibliographic Info

Paper provided by University of Brescia, Department of Economics in its series Working Papers with number 0705.

as in new window
Length:
Date of creation: 2007
Date of revision:
Handle: RePEc:ubs:wpaper:0705

Contact details of provider:
Postal: Via S. Faustino 74/B, 25122 Brescia
Phone: +39-(0)30-2988704
Web page: http://www.unibs.it/atp/page.1019.0.0.0.atp?node=224
More information through EDIRC

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
  2. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  3. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-89, October.
  4. Durham, Garland B., 2006. "Monte Carlo methods for estimating, smoothing, and filtering one- and two-factor stochastic volatility models," Journal of Econometrics, Elsevier, vol. 133(1), pages 273-305, July.
  5. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Theory," Econometrica, Econometric Society, vol. 52(3), pages 681-700, May.
  6. Granger, Clive W. J. & Ding, Zhuanxin, 1996. "Varieties of long memory models," Journal of Econometrics, Elsevier, vol. 73(1), pages 61-77, July.
  7. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
  8. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-39, November.
  9. Lo, Andrew W., 1988. "Maximum Likelihood Estimation of Generalized Itô Processes with Discretely Sampled Data," Econometric Theory, Cambridge University Press, vol. 4(02), pages 231-247, August.
  10. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
  11. Geweke, John & Whiteman, Charles, 2006. "Bayesian Forecasting," Handbook of Economic Forecasting, Elsevier.
  12. John Geweke, 2004. "Getting It Right: Joint Distribution Tests of Posterior Simulators," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 799-804, January.
  13. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
  14. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, 06.
  15. Gallant, A.R. & Tauchen, G., 1988. "Seminonparametric Estimation Of Conditionally Constrained Heterogeneous Processes: Asset Pricing Applications," Papers 88-59, Chicago - Graduate School of Business.
  16. Harvey, Campbell R. & Siddique, Akhtar, 1999. "Autoregressive Conditional Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(04), pages 465-487, December.
  17. Chung-Ming Kuan, 2006. "Artificial Neural Networks," IEAS Working Paper : academic research 06-A010, Institute of Economics, Academia Sinica, Taipei, Taiwan.
  18. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  19. Chib, Siddhartha, 1996. "Calculating posterior distributions and modal estimates in Markov mixture models," Journal of Econometrics, Elsevier, vol. 75(1), pages 79-97, November.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:ubs:wpaper:0705. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matteo Galizzi).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.