IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03267194.html
   My bibliography  Save this paper

Water Footprint of Food Quality Schemes

Author

Listed:
  • Antonio Bodini

    (UNIPR - Università degli studi di Parma = University of Parma)

  • Sara Chiussi

    (UNIPR - Università degli studi di Parma = University of Parma)

  • Michele Donati

    (UNIPR - Università degli studi di Parma = University of Parma)

  • Valentin Bellassen

    (CESAER - Centre d'Economie et de Sociologie Rurales Appliquées à l'Agriculture et aux Espaces Ruraux - AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • Áron Török

    (Corvinus University of Budapest)

  • Liesbeth Dries

    (WUR - Wageningen University and Research Centre)

  • Dubravka Sinčić Ćorić

    (Faculty of Economics [Zagreb] - University of Zagreb)

  • Lisa Gauvrit

    (Ecozept - Partenaires INRAE)

  • Efthimia Tsakiridou

    (Aristotle University of Thessaloniki)

  • Edward Majewski

    (SGGW - Warsaw University of Life Sciences)

  • Bojan Ristic

    (University of Belgrade [Belgrade])

  • Zaklina Stojanovic

    (University of Belgrade [Belgrade])

  • Jose Maria Gil Roig

    (CREDA - Centre for Agro-Food Economy & Development, UPC-IRTA, Castelldefels, Spain - UPC - Universitat Politècnica de Catalunya = Université polytechnique de Catalogne [Barcelona])

  • Apichaya Lilavanichakul

    (KU - Kasetsart University [Bangkok, Thailand])

  • Nguyễn Quỳnh An

    (School of Economics [University of Economics Ho Chi Minh City] - UEH - University of Economics Ho Chi Minh City)

  • Filippo Arfini

    (UNIPR - Università degli studi di Parma = University of Parma)

Abstract

Water Footprint (WF, henceforth) is an indicator of water consumption and has taken ground to assess the impact of agricultural production processes over freshwater. The focus of this study was contrasting non-conventional, certified products with identical products obtained through conventional production schemes (REF, henceforth) using WF as a measure of their pressure on water resources. The aim was to the show whether products that are certified as Food Quality Schemes (FQS, henceforth) could also incorporate the lower impact on water among their quality features. To perform this comparison, we analysed 23 products selected among Organic, PDO and PGI as FQS, and their conventional counterparts. By restricting the domain of analysis to the on-farm phase of the production chain, we obtained that that no significant differences emerged between the FQS and REF products. However, if the impact is measured per unit area rather than per unit product, FQS showed a significant reduction in water demand.

Suggested Citation

  • Antonio Bodini & Sara Chiussi & Michele Donati & Valentin Bellassen & Áron Török & Liesbeth Dries & Dubravka Sinčić Ćorić & Lisa Gauvrit & Efthimia Tsakiridou & Edward Majewski & Bojan Ristic & Zaklin, 2021. "Water Footprint of Food Quality Schemes," Post-Print hal-03267194, HAL.
  • Handle: RePEc:hal:journl:hal-03267194
    DOI: 10.1515/jafio-2019-0045
    Note: View the original document on HAL open archive server: https://hal.inrae.fr/hal-03267194
    as

    Download full text from publisher

    File URL: https://hal.inrae.fr/hal-03267194/document
    Download Restriction: no

    File URL: https://libkey.io/10.1515/jafio-2019-0045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Barker, Randolph & Dawe, D. & Inocencio, A., 2003. "Economics of water productivity in managing water for agriculture," Book Chapters,, International Water Management Institute.
    2. Upali A. Amarasinghe & Vladimir Smakhtin, 2014. "Water productivity and water footprint: misguided concepts or useful tools in water management and policy?," Water International, Taylor & Francis Journals, vol. 39(7), pages 1000-1017, November.
    3. Aldaya, M.M. & Hoekstra, A.Y., 2010. "The water needed for Italians to eat pasta and pizza," Agricultural Systems, Elsevier, vol. 103(6), pages 351-360, July.
    4. Bocchiola, D. & Nana, E. & Soncini, A., 2013. "Impact of climate change scenarios on crop yield and water footprint of maize in the Po valley of Italy," Agricultural Water Management, Elsevier, vol. 116(C), pages 50-61.
    5. Chapagain, A.K. & Hoekstra, A.Y. & Savenije, H.H.G. & Gautam, R., 2006. "The water footprint of cotton consumption: An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries," Ecological Economics, Elsevier, vol. 60(1), pages 186-203, November.
    6. Kijne, J. W. & Barker, R. & Molden. D., 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, Reports H032631, International Water Management Institute.
    7. Pollard, S. & du Toit, D., 2005. "Achieving integrated water resource management: The mismatch in boundaries between water resources management and water supply," IWMI Books, Reports H038758, International Water Management Institute.
    8. Dabrowski, J.M. & Murray, K. & Ashton, P.J. & Leaner, J.J., 2009. "Agricultural impacts on water quality and implications for virtual water trading decisions," Ecological Economics, Elsevier, vol. 68(4), pages 1074-1082, February.
    9. Kijne, Jacob W. & Barker, Randolph & Molden, David J. (ed.), 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, International Water Management Institute, number 138054.
    10. Wichelns, Dennis, 2001. "The role of `virtual water' in efforts to achieve food security and other national goals, with an example from Egypt," Agricultural Water Management, Elsevier, vol. 49(2), pages 131-151, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. María Jesús Beltrán & Esther Velázquez, 2011. "Del metabolismo social al metabolismo hídrico," Documentos de Trabajo de la Asociación de Economía Ecológica en España 01_2011, Asociación de Economía Ecológica en España.
    2. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    3. Kumar, M. Dinesh & Singh, O.P. & Samad, Madar & Purohit, Chaitali & Didyala, Malkit Singh, 2009. "Water productivity of irrigated agriculture in India: potential areas for improvement," Book Chapters,, International Water Management Institute.
    4. Scheierling, Susanne M. & Treguer, David O. & Booker, James F. & Decker, Elisabeth, 2014. "How to assess agricultural water productivity ? looking for water in the agricultural productivity and efficiency literature," Policy Research Working Paper Series 6982, The World Bank.
    5. Kumar, M. Dinesh & Trivedi, K. & Singh, O. P., 2009. "Analyzing the impact of quality and reliability of irrigation water on crop water productivity using an irrigation quality index," IWMI Books, Reports H042636, International Water Management Institute.
    6. Eric Njuki & Boris E. Bravo-Ureta, 2019. "Examining irrigation productivity in U.S. agriculture using a single-factor approach," Journal of Productivity Analysis, Springer, vol. 51(2), pages 125-136, June.
    7. Kumar, M. Dinesh & Sharma, Bharat R. & Singh, O.P., 2009. "Water saving and yield enhancing micro-irrigation technologies: how far can they contribute to water productivity in Indian agriculture?," Book Chapters,, International Water Management Institute.
    8. Papadaskalopoulou, C. & Katsou, E. & Valta, K. & Moustakas, K. & Malamis, D. & Dodou, M., 2015. "Review and assessment of the adaptive capacity of the water sector in Cyprus against climate change impacts on water availability," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 95-112.
    9. Liu, Junguo & Williams, Jimmy R. & Zehnder, Alexander J.B. & Yang, Hong, 2007. "GEPIC - modelling wheat yield and crop water productivity with high resolution on a global scale," Agricultural Systems, Elsevier, vol. 94(2), pages 478-493, May.
    10. Gill, Tania & Punt, Cecilia, 2010. "The Potential Impact of Increased Irrigation Water Tariffs in South Africa," 2010 AAAE Third Conference/AEASA 48th Conference, September 19-23, 2010, Cape Town, South Africa 96425, African Association of Agricultural Economists (AAAE).
    11. Mohammed Mainuddin & Mac Kirby, 2009. "Agricultural productivity in the lower Mekong Basin: trends and future prospects for food security," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 1(1), pages 71-82, February.
    12. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    13. Hafeez, Mohsin & Bundschuh, Jochen & Mushtaq, Shahbaz, 2014. "Exploring synergies and tradeoffs: Energy, water, and economic implications of water reuse in rice-based irrigation systems," Applied Energy, Elsevier, vol. 114(C), pages 889-900.
    14. Kumar, M. Dinesh & Sharma, Bharat R. & Singh, O. P., 2009. "Water saving and yield enhancing micro-irrigation technologies: how far can they contribute to water productivity in Indian agriculture?," IWMI Books, Reports H042044, International Water Management Institute.
    15. Peake, A.S. & Carberry, P.S. & Raine, S.R. & Gett, V. & Smith, R.J., 2016. "An alternative approach to whole-farm deficit irrigation analysis: Evaluating the risk-efficiency of wheat irrigation strategies in sub-tropical Australia," Agricultural Water Management, Elsevier, vol. 169(C), pages 61-76.
    16. Fazlullah Akhtar & Bernhard Tischbein & Usman Awan, 2013. "Optimizing Deficit Irrigation Scheduling Under Shallow Groundwater Conditions in Lower Reaches of Amu Darya River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3165-3178, June.
    17. Kumar, M. Dinesh & Trivedi, K. & Singh, O.P., 2009. "Analyzing the impact of quality and reliability of irrigation water on crop water productivity using an irrigation quality index," Book Chapters,, International Water Management Institute.
    18. Hossain, Istiaque & Alam, Md. Mahmudul & Siwar, Chamhuri & Bin Mokhtar, Mazlin, 2019. "Measurement of Water Productivity in Seasonal Floodplain Beel Area," SocArXiv q3ayc, Center for Open Science.
    19. Mushtaq, Shahbaz & Maraseni, Tek Narayan & Maroulis, Jerry & Hafeez, Mohsin, 2009. "Energy and water tradeoffs in enhancing food security: A selective international assessment," Energy Policy, Elsevier, vol. 37(9), pages 3635-3644, September.
    20. Monaco, Federica & Sali, Guido, 2018. "How water amounts and management options drive Irrigation Water Productivity of rice. A multivariate analysis based on field experiment data," Agricultural Water Management, Elsevier, vol. 195(C), pages 47-57.

    More about this item

    Keywords

    agricultural production; crop water requirement; evapotranspiration; irrigation; yield; water footprint;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03267194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.