IDEAS home Printed from https://ideas.repec.org/p/exs/wpaper/22-062.html
   My bibliography  Save this paper

Searching for Sustainable Footprints: Does ICT increase CO2 emissions?

Author

Listed:
  • Olatunji A. Shobande

    (Teesside University, UK)

  • Simplice A. Asongu

    (Yaoundé, Cameroon)

Abstract

Generally, the revolutionary idea behind using information and communication technology (ICT) has improved potential productivity in many industries, particularly in Africa. ICT is an essential tool in the oil and gas industry and plays a complementary role in technological dynamics and cross-sectoral productivity. For the educational sector, ICT facilitates research and development as well as in imparting knowledge. ICT remains the password to essential inputs required for any given output in terms of improved productivity and economic development. With regard to employment creation, ICT accounts for more than 50% of employment globally. Despite the significant role of ICT in the economy, evidence shows that more than 90% of carbon emissions have been linked to ICT production, installation, and usage. This study aims to determine whether ICT causes environmental sustainability in Nigeria and South Africa. The methodological contribution of the study lies in combining the STIRPAT framework and time series based on the VAR/VEC Granger causality, enabling the study to uncouple the dynamic interaction among environmental sustainability indicators. The findings show that ICT has contributed to South Africa's environmental sustainability, whereas evidence in Nigeria is relatively mixed. Therefore, the study recommends the urgent need to provide intervention programs tailored toward investing in environmental infrastructure to mitigate the threat of climate change in Nigeria.

Suggested Citation

  • Olatunji A. Shobande & Simplice A. Asongu, 2022. "Searching for Sustainable Footprints: Does ICT increase CO2 emissions?," Working Papers 22/062, European Xtramile Centre of African Studies (EXCAS).
  • Handle: RePEc:exs:wpaper:22/062
    as

    Download full text from publisher

    File URL: http://publications.excas.org/RePEc/exs/exs-wpaper/Searching-for-Sustainable-Footprints-Does-ICT-increase-CO2-emissions.pdf
    File Function: Revised version, 2022
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. repec:cup:cbooks:9781108422536 is not listed on IDEAS
    2. Asongu, Simplice A. & Le Roux, Sara & Biekpe, Nicholas, 2017. "Environmental degradation, ICT and inclusive development in Sub-Saharan Africa," Energy Policy, Elsevier, vol. 111(C), pages 353-361.
    3. Asongu, Simplice A. & Le Roux, Sara & Biekpe, Nicholas, 2018. "Enhancing ICT for environmental sustainability in sub-Saharan Africa," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 209-216.
    4. Zahoor Ahmed & Muhammad Mansoor Asghar & Muhammad Nasir Malik & Kishwar Nawaz, 2020. "Moving towards a sustainable environment: The dynamic linkage between natural resources, human capital, urbanization, economic growth, and ecological footprint in China," Post-Print hal-03557938, HAL.
    5. Troster, Victor & Shahbaz, Muhammad & Uddin, Gazi Salah, 2018. "Renewable energy, oil prices, and economic activity: A Granger-causality in quantiles analysis," Energy Economics, Elsevier, vol. 70(C), pages 440-452.
    6. Mark Strazicich & John List, 2003. "Are CO 2 Emission Levels Converging Among Industrial Countries?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 24(3), pages 263-271, March.
    7. Shobande, Olatunji A. & Asongu, Simplice A., 2022. "The Critical Role of Education and ICT in Promoting Environmental Sustainability in Eastern and Southern Africa: A Panel VAR Approach," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    8. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    9. Sinha, Avik & Shahbaz, Muhammad & Sengupta, Tuhin, 2018. "Renewable Energy Policies and Contradictions in Causality: A case of Next 11 Countries," MPRA Paper 87542, University Library of Munich, Germany, revised 17 Jun 2018.
    10. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    11. Joseph Aldy, 2006. "Per Capita Carbon Dioxide Emissions: Convergence or Divergence?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 33(4), pages 533-555, April.
    12. Zhang, Yue-Jun & Wei, Yi-Ming, 2010. "The crude oil market and the gold market: Evidence for cointegration, causality and price discovery," Resources Policy, Elsevier, vol. 35(3), pages 168-177, September.
    13. Shobande Olatunji Abdul, 2019. "Effects of Energy Use on Socioeconomic Predictors in Africa: Synthesizing Evidence," Studia Universitatis „Vasile Goldis” Arad – Economics Series, Sciendo, vol. 29(4), pages 21-40, December.
    14. Xiaohang Ren & Cheng Cheng & Zhen Wang & Cheng Yan, 2021. "Spillover and dynamic effects of energy transition and economic growth on carbon dioxide emissions for the European Union: A dynamic spatial panel model," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 228-242, January.
    15. Ahmed, Zahoor & Asghar, Muhammad Mansoor & Malik, Muhammad Nasir & Nawaz, Kishwar, 2020. "Moving towards a sustainable environment: The dynamic linkage between natural resources, human capital, urbanization, economic growth, and ecological footprint in China," Resources Policy, Elsevier, vol. 67(C).
    16. Wang, Jianda & Dong, Xiucheng & Dong, Kangyin, 2022. "How does ICT agglomeration affect carbon emissions? The case of Yangtze River Delta urban agglomeration in China," Energy Economics, Elsevier, vol. 111(C).
    17. Joseph E. Aldy, 2007. "Divergence in State-Level Per Capita Carbon Dioxide Emissions," Land Economics, University of Wisconsin Press, vol. 83(3), pages 353-369.
    18. Avom, Désiré & Nkengfack, Hilaire & Fotio, Hervé Kaffo & Totouom, Armand, 2020. "ICT and environmental quality in Sub-Saharan Africa: Effects and transmission channels," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    19. Brooks,Chris, 2019. "Introductory Econometrics for Finance," Cambridge Books, Cambridge University Press, number 9781108436823.
    20. Dong, Kangyin & Dong, Xiucheng & Ren, Xiaohang, 2020. "Can expanding natural gas infrastructure mitigate CO2 emissions? Analysis of heterogeneous and mediation effects for China," Energy Economics, Elsevier, vol. 90(C).
    21. Ren, Xiaohang & Li, Yiying & yan, Cheng & Wen, Fenghua & Lu, Zudi, 2022. "The interrelationship between the carbon market and the green bonds market: Evidence from wavelet quantile-on-quantile method," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    22. Wang, Xiong & Wang, Xiao & Ren, Xiaohang & Wen, Fenghua, 2022. "Can digital financial inclusion affect CO2 emissions of China at the prefecture level? Evidence from a spatial econometric approach," Energy Economics, Elsevier, vol. 109(C).
    23. Chien-Chiang Lee & Chun-Ping Chang & Pei-Fen Chen, 2008. "Do CO2 emission levels converge among 21 OECD countries? New evidence from unit root structural break tests," Applied Economics Letters, Taylor & Francis Journals, vol. 15(7), pages 551-556.
    24. Victor Troster, 2018. "Testing for Granger-causality in quantiles," Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 850-866, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaowen Wang & Nishang Tian & Shuting Wang, 2022. "The Impact of Information and Communication Technology Industrial Co-Agglomeration on Carbon Productivity with the Background of the Digital Economy: Empirical Evidence from China," IJERPH, MDPI, vol. 20(1), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shobande, Olatunji A. & Asongu, Simplice A., 2022. "The Critical Role of Education and ICT in Promoting Environmental Sustainability in Eastern and Southern Africa: A Panel VAR Approach," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    2. Diego Romero-Ávila & Tolga Omay, 2023. "Convergence of GHGs emissions in the long-run: aerosol precursors, reactive gases and aerosols—a nonlinear panel approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12303-12337, November.
    3. Sinha, Avik & Shah, Muhammad Ibrahim & Sengupta, Tuhin & Jiao, Zhilun, 2020. "Analyzing Technology-Emissions Association in Top-10 Polluted MENA Countries: How to Ascertain Sustainable Development by Quantile Modeling Approach," MPRA Paper 100253, University Library of Munich, Germany, revised 2020.
    4. Sun, Xianming & Xiao, Shiyi & Ren, Xiaohang & Xu, Bing, 2023. "Time-varying impact of information and communication technology on carbon emissions," Energy Economics, Elsevier, vol. 118(C).
    5. Mighri, Zouheir & Ragoubi, Hanen & Sarwar, Suleman & Wang, Yihan, 2022. "Quantile Granger causality between US stock market indices and precious metal prices," Resources Policy, Elsevier, vol. 76(C).
    6. Shahbaz, Muhammad & Khraief, Naceur & Hammoudeh, Shawkat, 2019. "How Do Carbon Emissions Respond to Economic Shocks? Evidence from Low-, Middle- and High-Income Countries," MPRA Paper 93976, University Library of Munich, Germany, revised 15 May 2019.
    7. Lee, Chi-Chuan & Lee, Chien-Chiang & Li, Yong-Yi, 2021. "Oil price shocks, geopolitical risks, and green bond market dynamics," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    8. Mariam Camarero & Yurena Mendoza & Javier Ordóñez, 2011. "Re-examining CO2 emissions. Is the assessment of convergence meaningless?," Working Papers 2011/06, Economics Department, Universitat Jaume I, Castellón (Spain).
    9. Mar'ia Jos'e Presno & Manuel Landajo & Paula Fern'andez Gonz'alez, 2024. "Stochastic convergence in per capita CO$_2$ emissions. An approach from nonlinear stationarity analysis," Papers 2402.00567, arXiv.org.
    10. Cai, Yifei & Chang, Tsangyao & Inglesi-Lotz, Roula, 2018. "Asymmetric persistence in convergence for carbon dioxide emissions based on quantile unit root test with Fourier function," Energy, Elsevier, vol. 161(C), pages 470-481.
    11. Ahmed, Mumtaz & Khan, Atif Maqbool & Bibi, Salma & Zakaria, Muhammad, 2017. "Convergence of per capita CO2 emissions across the globe: Insights via wavelet analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 86-97.
    12. Nilgun Yavuz & Veli Yilanci, 2013. "Convergence in Per Capita Carbon Dioxide Emissions Among G7 Countries: A TAR Panel Unit Root Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(2), pages 283-291, February.
    13. Octavio Fernández-Amador & Doris A. Oberdabernig & Patrick Tomberger, 2019. "Testing for Convergence in Carbon Dioxide Emissions Using a Bayesian Robust Structural Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1265-1286, August.
    14. Nazlioglu, Saban & Payne, James E. & Lee, Junsoo & Rayos-Velazquez, Marco & Karul, Cagin, 2021. "Convergence in OPEC carbon dioxide emissions: Evidence from new panel stationarity tests with factors and breaks," Economic Modelling, Elsevier, vol. 100(C).
    15. Olatunji Abdul Shobande, 2021. "Decomposing the Persistent and Transitory Effect of Information and Communication Technology on Environmental Impacts Assessment in Africa: Evidence from Mundlak Specification," Sustainability, MDPI, vol. 13(9), pages 1-12, April.
    16. Apergis, Nicholas & Payne, James E., 2017. "Per capita carbon dioxide emissions across U.S. states by sector and fossil fuel source: Evidence from club convergence tests," Energy Economics, Elsevier, vol. 63(C), pages 365-372.
    17. Lee, Chien-Chiang & Chang, Chun-Ping, 2009. "Stochastic convergence of per capita carbon dioxide emissions and multiple structural breaks in OECD countries," Economic Modelling, Elsevier, vol. 26(6), pages 1375-1381, November.
    18. Yoon, Seong-Min, 2022. "On the interdependence between biofuel, fossil fuel and agricultural food prices: Evidence from quantile tests," Renewable Energy, Elsevier, vol. 199(C), pages 536-545.
    19. Paul Evans & Ji Uk Kim, 2016. "Convergence analysis as spatial dynamic panel regression and distribution dynamics of $$\hbox {CO}_{2}$$ CO 2 emissions in Asian countries," Empirical Economics, Springer, vol. 50(3), pages 729-751, May.
    20. Catherine Wolfram & Orie Shelef & Paul Gertler, 2012. "How Will Energy Demand Develop in the Developing World?," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 119-138, Winter.

    More about this item

    Keywords

    CO2 emissions; ICT; Economic development; Sub-Saharan Africa;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • O38 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Government Policy
    • O40 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - General
    • O55 - Economic Development, Innovation, Technological Change, and Growth - - Economywide Country Studies - - - Africa
    • P37 - Political Economy and Comparative Economic Systems - - Socialist Institutions and Their Transitions - - - Legal

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:exs:wpaper:22/062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anutechia Asongu Simplice (email available below). General contact details of provider: http://excas.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.