Advanced Search
MyIDEAS: Login to save this paper or follow this series

Nonlinearity, Nonstationarity, and Thick Tails: How They Interact to Generate Persistency in Memory

Contents:

Author Info

  • Joon Y. Park
  • J. Isaac Miller

Abstract

In this paper, we consider nonlinear transformations of random walks driven by thick-tailed innovations with undefined means or variances. In particular, we show how nonlinearity, nonstationarity, and thick tails interact to generate persistency in memory, and we clearly demonstrate that this triad may generate a broad spectrum of persistency patterns. Time series generated by nonlinear transformations of random walks with thick-tailed innovations have asymptotic autocorrelations that decay very slowly as the number of lags increases or do not even decay at all and remain constant at all lags. Depending upon the type of transformation considered and how the model error is specified, they are given by random constants, deterministic functions which decay slowly at polynomial rates, or mixtures of the two. These patterns in autocorrelations, along with other sample characteristics of the transformed time series, make it very plausible that this triad is involved in the data generating processes for many actual economic and financial time series data. We use our model to analyze two empirical applications: exchange rates governed by a target zone and electricity price spikes driven by capacity shortfalls

Download Info

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Bibliographic Info

Paper provided by Econometric Society in its series Econometric Society 2004 North American Summer Meetings with number 597.

as in new window
Length:
Date of creation: 11 Aug 2004
Date of revision:
Handle: RePEc:ecm:nasm04:597

Contact details of provider:
Phone: 1 212 998 3820
Fax: 1 212 995 4487
Email:
Web page: http://www.econometricsociety.org/pastmeetings.asp
More information through EDIRC

Related research

Keywords: persistency in memory; nonlinear transformations; random walks; thick tails; stable distributions; target zone exchange rate models; wholesale electricity prices;

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Park, Joon Y., 2002. "Nonstationary nonlinear heteroskedasticity," Journal of Econometrics, Elsevier, vol. 110(2), pages 383-415, October.
  2. Krugman, Paul R, 1991. "Target Zones and Exchange Rate Dynamics," The Quarterly Journal of Economics, MIT Press, vol. 106(3), pages 669-82, August.
  3. Svensson, Lars E. O., 1991. "The term structure of interest rate differentials in a target zone : Theory and Swedish data," Journal of Monetary Economics, Elsevier, vol. 28(1), pages 87-116, August.
  4. Dufour, Jean-Marie & Kurz-Kim, Jeong-Ryeol, 2003. "Exact tests and confidence sets for the tail coefficient of a-stable distributions," Discussion Paper Series 1: Economic Studies 2003,16, Deutsche Bundesbank, Research Centre.
  5. Park, Joon Y & Phillips, Peter C B, 2001. "Nonlinear Regressions with Integrated Time Series," Econometrica, Econometric Society, vol. 69(1), pages 117-61, January.
  6. Park, Joon, 2003. "Nonstationary Nonlinearity: An Outlook for New Opportunities," Working Papers 2003-05, Rice University, Department of Economics.
  7. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, December.
  8. Peter C.B. Phillips & Joon Y. Park, 1998. "Asymptotics for Nonlinear Transformations of Integrated Time Series," Cowles Foundation Discussion Papers 1182, Cowles Foundation for Research in Economics, Yale University.
  9. Knittel, Christopher R. & Roberts, Michael R., 2005. "An empirical examination of restructured electricity prices," Energy Economics, Elsevier, vol. 27(5), pages 791-817, September.
  10. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
  11. Joon Y. Park & Yoosoon Chang, 2004. "Endogeneity in Nonlinear Regressions with Integrated Time Series," Econometric Society 2004 North American Winter Meetings 594, Econometric Society.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Miller, J. Isaac, 2011. "Testing the bounds: Empirical behavior of target zone fundamentals," Economic Modelling, Elsevier, vol. 28(4), pages 1782-1792, July.
  2. Chung, Heetaik & Park, Joon Y., 2007. "Nonstationary nonlinear heteroskedasticity in regression," Journal of Econometrics, Elsevier, vol. 137(1), pages 230-259, March.
  3. Ioannis Kasparis & Peter C.B. Phillips & Tassos Magdalinos, 2012. "Non-linearity Induced Weak Instrumentation," University of Cyprus Working Papers in Economics 02-2012, University of Cyprus Department of Economics.
  4. Han, Heejoon & Park, Joon Y., 2008. "Time series properties of ARCH processes with persistent covariates," Journal of Econometrics, Elsevier, vol. 146(2), pages 275-292, October.
  5. Chang, Yoosoon & Miller, J. Isaac & Park, Joon Y., 2005. "Extracting a Common Stochastic Trend: Theories with Some Applications," Working Papers 2005-06, Rice University, Department of Economics.
  6. Guillaume Chevillon & Sophocles Mavroeidis, 2013. "Learning generates Long Memory," Post-Print hal-00661012, HAL.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:ecm:nasm04:597. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.