Advanced Search
MyIDEAS: Login to save this paper or follow this series

Non-linearity Induced Weak Instrumentation

Contents:

Author Info

Abstract

In regressions involving integrable functions we examine the limit properties of IV estimators that utilise integrable transformations of lagged regressors as instruments. The regressors can be either I(0) or nearly integrated (NI) processes. We show that this kind of nonlinearity in the regression function can significantly affect the relevance of the instruments. In particular, such instruments become weak when the signal of the regressor is strong, as it is in the NI case. Instruments based on integrable functions of lagged NI regressors display long range dependence and so remain relevant even at long lags, continuing to contribute to variance reduction in IV estimation. However, simulations show that OLS is generally superior to IV estimation in terms of MSE, even in the presence of endogeneity. Estimation precision is also reduced when the regressor is nonstationary.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://cowles.econ.yale.edu/P/cd/d18b/d1872.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Cowles Foundation for Research in Economics, Yale University in its series Cowles Foundation Discussion Papers with number 1872.

as in new window
Length: 38 pages
Date of creation: Sep 2012
Date of revision:
Publication status: Published in Econometric Reviews (2014), 33(5-6): 676-712
Handle: RePEc:cwl:cwldpp:1872

Note: CFP 1404
Contact details of provider:
Postal: Yale University, Box 208281, New Haven, CT 06520-8281 USA
Phone: (203) 432-3702
Fax: (203) 432-6167
Web page: http://cowles.econ.yale.edu/
More information through EDIRC

Order Information:
Postal: Cowles Foundation, Yale University, Box 208281, New Haven, CT 06520-8281 USA

Related research

Keywords: Instrumental variables; Integrable function; Integrated process; Invariance principle; Local time; Mixed normality; Stationarity; Nonlinear cointegration; Unit roots; Weak Instruments;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Rustam Ibragimov & Peter C.B. Phillips, 2004. "Regression Asymptotics Using Martingale Convergence Methods," Cowles Foundation Discussion Papers 1473, Cowles Foundation for Research in Economics, Yale University.
  2. Phillips, Peter C.B. & Jin, Sainan & Hu, Ling, 2007. "Nonstationary discrete choice: A corrigendum and addendum," Journal of Econometrics, Elsevier, vol. 141(2), pages 1115-1130, December.
  3. Wang, Qiying & Phillips, Peter C.B., 2009. "Asymptotic Theory For Local Time Density Estimation And Nonparametric Cointegrating Regression," Econometric Theory, Cambridge University Press, vol. 25(03), pages 710-738, June.
  4. Joon Y. Park & Peter C. B. Phillips, 1999. "Nonlinear Regressions with Integrated Time Series," Working Paper Series no6, Institute of Economic Research, Seoul National University.
  5. P. Jeganathan, 2006. "Limit Theorems for Functionals of Sums That Converge to Fractional Stable Motions," Cowles Foundation Discussion Papers 1558, Cowles Foundation for Research in Economics, Yale University, revised Mar 2006.
  6. J. Isaac Miller & Joon Y. Park, 2008. "Nonlinearity, Nonstationarity, and Thick Tails: How They Interact to Generate Persistency in Memory," Working Papers 0801, Department of Economics, University of Missouri.
  7. Offer Lieberman & Peter C.B. Phillips, 2002. "Error Bounds and Asymptotic Expansions for Toeplitz Product Functionals of Unbounded Spectra," Cowles Foundation Discussion Papers 1374, Cowles Foundation for Research in Economics, Yale University.
  8. Joon Y. Park & Yoosoon Chang, 2004. "Endogeneity in Nonlinear Regressions with Integrated Time Series," Econometric Society 2004 North American Winter Meetings 594, Econometric Society.
  9. Leeb, Hannes & P tscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(01), pages 21-59, February.
  10. P. Jeganathan, 2008. "Limit Theorems for Functionals of Sums that Converge to Fractional Brownian and Stable Motions," Cowles Foundation Discussion Papers 1649, Cowles Foundation for Research in Economics, Yale University.
  11. P tscher, Benedikt M., 2004. "Nonlinear Functions And Convergence To Brownian Motion: Beyond The Continuous Mapping Theorem," Econometric Theory, Cambridge University Press, vol. 20(01), pages 1-22, February.
  12. Kasparis, Ioannis, 2008. "Detection Of Functional Form Misspecification In Cointegrating Relations," Econometric Theory, Cambridge University Press, vol. 24(05), pages 1373-1403, October.
  13. Robert de Jong, 2004. "Nonlinear estimators with integrated regressors but without exogeneity," Econometric Society 2004 North American Winter Meetings 324, Econometric Society.
  14. Park, Joon Y., 2002. "Nonstationary nonlinear heteroskedasticity," Journal of Econometrics, Elsevier, vol. 110(2), pages 383-415, October.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1872. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Glena Ames).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.