IDEAS home Printed from https://ideas.repec.org/p/dui/wpaper/2005.html
   My bibliography  Save this paper

Thesenpapier: Constructing Consistent Energy Scenarios using Cross Impact Matrices

Author

Listed:
  • Roland Broll
  • Gerald Blumberg
  • Christoph Weber

    (Chair for Management Sciences and Energy Economics, University of Duisburg-Essen (Campus Essen))

Abstract

The ongoing transformation process towards a low or even zero emission energy system is facing a steadily increasing complexity, notably through variable renewable energies and sector coupling. At the same time, the necessity for long-term decisions associated with high capital costs remains. Hence methods are desirable that help decision makers to manage the broad range of possible futures without overly simplifying the interplay of multiple developments in many societal, technological, and economic fields. This requires the inclusion of expert knowledge from different domains without putting an excessive workload on these experts. The paper at hand proposes an efficient two stage approach to derive a limited set of scenarios. In the first step, the focus is on establishing the key causal relationships and derive the key exogenous drivers for future developments. In the second step, their interdependency is then assessed in more detail and consistent scenarios are derived. The approach builds on two existing methods, the ADVanced Impact ANalysis (ADVIAN) and the Cross impact balances analysis (CIB), yet these are refined and tailored both in terms of improved computation approaches and advanced assessment indicators. The newly developed approach is applied to the case of network extension planning as this is characterized by both significant complexity increases and longterm investment decisions under high uncertainty. Starting with many potential driving factors, just a few key exogenous drivers are identified and four consistent scenarios up to the year 2050 are derived with a limited amount of expert assessment workload. The methodology enables thus the development of consistent socio techno economic scenarios that may also serve as framework for more detailed model-based assessments of energy system developments.

Suggested Citation

  • Roland Broll & Gerald Blumberg & Christoph Weber, "undated". "Thesenpapier: Constructing Consistent Energy Scenarios using Cross Impact Matrices," EWL Working Papers 2005, University of Duisburg-Essen, Chair for Management Science and Energy Economics.
  • Handle: RePEc:dui:wpaper:2005
    as

    Download full text from publisher

    File URL: https://www.wiwi.uni-due.de/fileadmin/fileupload/BWL-ENERGIE/Arbeitspapiere/RePEc/pdf/wp2005_ConstructingConsistentEnergyScenariosUsingCrossImpactMatrices.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, Hakyeon & Geum, Youngjung, 2017. "Development of the scenario-based technology roadmap considering layer heterogeneity: An approach using CIA and AHP," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 12-24.
    2. Bañuls, Victor A. & Turoff, Murray & Hiltz, Starr Roxanne, 2013. "Collaborative scenario modeling in emergency management through cross-impact," Technological Forecasting and Social Change, Elsevier, vol. 80(9), pages 1756-1774.
    3. Bentham, Jeremy, 2014. "The scenario approach to possible futures for oil and natural gas," Energy Policy, Elsevier, vol. 64(C), pages 87-92.
    4. Panula-Ontto, J. & Piirainen, K.A., 2018. "EXIT: An alternative approach for structural cross-impact modeling and analysis," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 89-100.
    5. Panula-Ontto, Juha & Luukkanen, Jyrki & Kaivo-oja, Jari & O'Mahony, Tadhg & Vehmas, Jarmo & Valkealahti, Seppo & Björkqvist, Tomas & Korpela, Timo & Järventausta, Pertti & Majanne, Yrjö & Kojo, Matti , 2018. "Cross-impact analysis of Finnish electricity system with increased renewables: Long-run energy policy challenges in balancing supply and consumption," Energy Policy, Elsevier, vol. 118(C), pages 504-513.
    6. Asan, Umut & Erhan Bozdag, Cafer & Polat, Seçkin, 2004. "A fuzzy approach to qualitative cross impact analysis," Omega, Elsevier, vol. 32(6), pages 443-458, December.
    7. Weimer-Jehle, Wolfgang & Buchgeister, Jens & Hauser, Wolfgang & Kosow, Hannah & Naegler, Tobias & Poganietz, Witold-Roger & Pregger, Thomas & Prehofer, Sigrid & von Recklinghausen, Andreas & Schippl, , 2016. "Context scenarios and their usage for the construction of socio-technical energy scenarios," Energy, Elsevier, vol. 111(C), pages 956-970.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panula-Ontto, Juha, 2019. "The AXIOM approach for probabilistic and causal modeling with expert elicited inputs," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 292-308.
    2. Jodlbauer, Herbert & Tripathi, Shailesh & Brunner, Manuel & Bachmann, Nadine, 2022. "Stability of cross impact matrices," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    3. Panula-Ontto, J. & Piirainen, K.A., 2018. "EXIT: An alternative approach for structural cross-impact modeling and analysis," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 89-100.
    4. Vögele, Stefan & Hansen, Patrick & Poganietz, Witold-Roger & Prehofer, Sigrid & Weimer-Jehle, Wolfgang, 2017. "Building scenarios for energy consumption of private households in Germany using a multi-level cross-impact balance approach," Energy, Elsevier, vol. 120(C), pages 937-946.
    5. Schubert, Johan & Moradi, Farshad & Asadi, Hirad & Luotsinen, Linus & Sjöberg, Eric & Hörling, Pontus & Linderhed, Anna & Oskarsson, Daniel, 2015. "Simulation-based decision support for evaluating operational plans," Operations Research Perspectives, Elsevier, vol. 2(C), pages 36-56.
    6. Bortoni, Edson C. & Magalhães, Leonardo P. & Nogueira, Luiz A.H. & Bajay, Sérgio V. & Cassula, Agnelo M., 2020. "An assessment of energy efficient motors application by scenarios evaluation," Energy Policy, Elsevier, vol. 140(C).
    7. Bouw, Kathelijne & Noorman, Klaas Jan & Wiekens, Carina J. & Faaij, André, 2021. "Local energy planning in the built environment: An analysis of model characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    8. Thomas Pregger & Tobias Naegler & Wolfgang Weimer-Jehle & Sigrid Prehofer & Wolfgang Hauser, 2020. "Moving towards socio-technical scenarios of the German energy transition—lessons learned from integrated energy scenario building," Climatic Change, Springer, vol. 162(4), pages 1743-1762, October.
    9. Vanessa J. Schweizer, 2020. "Reflections on cross-impact balances, a systematic method constructing global socio-technical scenarios for climate change research," Climatic Change, Springer, vol. 162(4), pages 1705-1722, October.
    10. Turoff, Murray & Hiltz, Starr Roxanne & Bañuls, Víctor A. & Van Den Eede, Gerd, 2013. "Multiple perspectives on planning for emergencies: An introduction to the special issue on planning and foresight for emergency preparedness and management," Technological Forecasting and Social Change, Elsevier, vol. 80(9), pages 1647-1656.
    11. Behnoosh Matani & Babak Shirazi & Javad Soltanzadeh, 2019. "F-MaMcDm: Sustainable Green-Based Hydrogen Production Technology Roadmap Using Fuzzy Multi-Aspect Multi-Criteria Decision-Making," International Journal of Innovation and Technology Management (IJITM), World Scientific Publishing Co. Pte. Ltd., vol. 16(08), pages 1-32, December.
    12. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    13. Tobias Witt & Matthias Klumpp, 2021. "Multi-Period Multi-Criteria Decision Making under Uncertainty: A Renewable Energy Transition Case from Germany," Sustainability, MDPI, vol. 13(11), pages 1-20, June.
    14. Margherita, Alessandro & Elia, Gianluca & Klein, Mark, 2021. "Managing the COVID-19 emergency: A coordination framework to enhance response practices and actions," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    15. Truffer, Bernhard & Schippl, Jens & Fleischer, Torsten, 2017. "Decentering technology in technology assessment: prospects for socio-technical transitions in electric mobility in Germany," Technological Forecasting and Social Change, Elsevier, vol. 122(C), pages 34-48.
    16. Nazarenko, Anastasia & Vishnevskiy, Konstantin & Meissner, Dirk & Daim, Tugrul, 2022. "Applying digital technologies in technology roadmapping to overcome individual biased assessments," Technovation, Elsevier, vol. 110(C).
    17. Saulius Baskutis & Jolanta Baskutiene & Valentinas Navickas & Yuriy Bilan & Wojciech Cieśliński, 2021. "Perspectives and Problems of Using Renewable Energy Sources and Implementation of Local “Green” Initiatives: A Regional Assessment," Energies, MDPI, vol. 14(18), pages 1-16, September.
    18. Barnes, Stuart J. & Mattsson, Jan, 2016. "Understanding current and future issues in collaborative consumption: A four-stage Delphi study," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 200-211.
    19. Blanco, Herib & Codina, Victor & Laurent, Alexis & Nijs, Wouter & Maréchal, François & Faaij, André, 2020. "Life cycle assessment integration into energy system models: An application for Power-to-Methane in the EU," Applied Energy, Elsevier, vol. 259(C).
    20. de Alcantara, Douglas Pedro & Martens, Mauro Luiz, 2019. "Technology Roadmapping (TRM): a systematic review of the literature focusing on models," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 127-138.

    More about this item

    Keywords

    energy scenarios; cross impact matrix; indirect and direct impacts; scenario-reduction; consistent scenarios;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dui:wpaper:2005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Andreas Fritz (email available below). General contact details of provider: https://edirc.repec.org/data/fwessde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.