IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v137y2018icp89-100.html
   My bibliography  Save this article

EXIT: An alternative approach for structural cross-impact modeling and analysis

Author

Listed:
  • Panula-Ontto, J.
  • Piirainen, K.A.

Abstract

Cross-impact methods are planning, foresight and decision support tools often used in conjunction with the scenario technique. They enable systems modeling in a theory-driven way, grounded in expert judgment and understanding. This article presents the EXIT approach, a novel modeling technique and a computational method for structural cross-impact analysis. EXIT extracts insights from an expert-sourced cross-impact model, which describes the structure of direct interactions within a system. The EXIT transformation produces a relative quantification of the emergent, systemic relationships between model components, effectuating over the complex web of interactions in the system. Compared to the more established matrix multiplication approach, EXIT produces novel and more detailed analytical outputs on the basis of similar input, and offers new analytical possibilities in structural cross-impact analysis. A software implementing the EXIT transformation is freely available.

Suggested Citation

  • Panula-Ontto, J. & Piirainen, K.A., 2018. "EXIT: An alternative approach for structural cross-impact modeling and analysis," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 89-100.
  • Handle: RePEc:eee:tefoso:v:137:y:2018:i:c:p:89-100
    DOI: 10.1016/j.techfore.2018.06.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S004016251731644X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2018.06.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Margherita Pagani, 2009. "Roadmapping 3G mobile TV : Strategic thinking and scenario planning through repeated cross-impact handling," Post-Print hal-02313094, HAL.
    2. Bañuls, Victor A. & Turoff, Murray & Hiltz, Starr Roxanne, 2013. "Collaborative scenario modeling in emergency management through cross-impact," Technological Forecasting and Social Change, Elsevier, vol. 80(9), pages 1756-1774.
    3. Lee, Hakyeon & Geum, Youngjung, 2017. "Development of the scenario-based technology roadmap considering layer heterogeneity: An approach using CIA and AHP," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 12-24.
    4. Alizadeh, Reza & Lund, Peter D. & Beynaghi, Ali & Abolghasemi, Mahdi & Maknoon, Reza, 2016. "An integrated scenario-based robust planning approach for foresight and strategic management with application to energy industry," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 162-171.
    5. D. Thorleuchter & D. Van Den Poel & A. Prinzie & -, 2010. "A compared R&D-based and patent-based cross impact analysis for identifying relationships between technologies," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 10/632, Ghent University, Faculty of Economics and Business Administration.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Beretta Zanoni & Silvia Vernizzi, 2023. "The Multiple-Scenario Valuation Method: When Robust Strategy Meets Valuation Needs," International Business Research, Canadian Center of Science and Education, vol. 16(12), pages 1-51, December.
    2. Roland Broll & Gerald Blumberg & Christoph Weber, "undated". "Thesenpapier: Constructing Consistent Energy Scenarios using Cross Impact Matrices," EWL Working Papers 2005, University of Duisburg-Essen, Chair for Management Science and Energy Economics.
    3. Bootz, Jean-Philippe & Michel, Sophie & Pallud, Jessie & Monti, Régine, 2022. "Possible changes of Industry 4.0 in 2030 in the face of uberization: Results of a participatory and systemic foresight study," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    4. Jodlbauer, Herbert & Tripathi, Shailesh & Brunner, Manuel & Bachmann, Nadine, 2022. "Stability of cross impact matrices," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    5. Panula-Ontto, Juha, 2019. "The AXIOM approach for probabilistic and causal modeling with expert elicited inputs," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 292-308.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panula-Ontto, Juha, 2019. "The AXIOM approach for probabilistic and causal modeling with expert elicited inputs," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 292-308.
    2. Panula-Ontto, Juha & Luukkanen, Jyrki & Kaivo-oja, Jari & O'Mahony, Tadhg & Vehmas, Jarmo & Valkealahti, Seppo & Björkqvist, Tomas & Korpela, Timo & Järventausta, Pertti & Majanne, Yrjö & Kojo, Matti , 2018. "Cross-impact analysis of Finnish electricity system with increased renewables: Long-run energy policy challenges in balancing supply and consumption," Energy Policy, Elsevier, vol. 118(C), pages 504-513.
    3. de Alcantara, Douglas Pedro & Martens, Mauro Luiz, 2019. "Technology Roadmapping (TRM): a systematic review of the literature focusing on models," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 127-138.
    4. D. Thorleuchter & D. Van Den Poel, 2013. "Quantitative Cross Impact Analysis with Latent Semantic Indexing," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 13/861, Ghent University, Faculty of Economics and Business Administration.
    5. Cheng, M.N. & Wong, Jane W.K. & Cheung, C.F. & Leung, K.H., 2016. "A scenario-based roadmapping method for strategic planning and forecasting: A case study in a testing, inspection and certification company," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 44-62.
    6. Roland Broll & Gerald Blumberg & Christoph Weber, "undated". "Thesenpapier: Constructing Consistent Energy Scenarios using Cross Impact Matrices," EWL Working Papers 2005, University of Duisburg-Essen, Chair for Management Science and Energy Economics.
    7. Zhang, Y. & Weng, W.G. & Huang, Z.L., 2018. "A scenario-based model for earthquake emergency management effectiveness evaluation," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 197-207.
    8. D. Thorleuchter & D. Van Den Poel, 2013. "Semantic Compared Cross Impact Analysis," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 13/862, Ghent University, Faculty of Economics and Business Administration.
    9. Noh, Heeyong & Kim, Kyuwoong & Song, Young-Keun & Lee, Sungjoo, 2021. "Opportunity-driven technology roadmapping: The case of 5G mobile services," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    10. Haegeman, Karel & Marinelli, Elisabetta & Scapolo, Fabiana & Ricci, Andrea & Sokolov, Alexander, 2013. "Quantitative and qualitative approaches in Future-oriented Technology Analysis (FTA): From combination to integration?," Technological Forecasting and Social Change, Elsevier, vol. 80(3), pages 386-397.
    11. Wang, Yadong & Wang, Delu & Shi, Xunpeng, 2023. "Sustainable development pathways of China's wind power industry under uncertainties: Perspective from economic benefits and technical potential," Energy Policy, Elsevier, vol. 182(C).
    12. Turoff, Murray & Hiltz, Starr Roxanne & Bañuls, Víctor A. & Van Den Eede, Gerd, 2013. "Multiple perspectives on planning for emergencies: An introduction to the special issue on planning and foresight for emergency preparedness and management," Technological Forecasting and Social Change, Elsevier, vol. 80(9), pages 1647-1656.
    13. Margherita, Alessandro & Elia, Gianluca & Klein, Mark, 2021. "Managing the COVID-19 emergency: A coordination framework to enhance response practices and actions," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    14. Altuntas, Serkan & Dereli, Turkay & Kusiak, Andrew, 2015. "Analysis of patent documents with weighted association rules," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 249-262.
    15. Hafezi, Reza & Akhavan, AmirNaser & Pakseresht, Saeed & Wood, David A., 2019. "A Layered Uncertainties Scenario Synthesizing (LUSS) model applied to evaluate multiple potential long-run outcomes for Iran's natural gas exports," Energy, Elsevier, vol. 169(C), pages 646-659.
    16. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    17. Ardito, Lorenzo & D'Adda, Diego & Messeni Petruzzelli, Antonio, 2018. "Mapping innovation dynamics in the Internet of Things domain: Evidence from patent analysis," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 317-330.
    18. Barnes, Stuart J. & Mattsson, Jan, 2016. "Understanding current and future issues in collaborative consumption: A four-stage Delphi study," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 200-211.
    19. Jodlbauer, Herbert & Tripathi, Shailesh & Brunner, Manuel & Bachmann, Nadine, 2022. "Stability of cross impact matrices," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    20. D. Thorleuchter & D. Van Den Poel, 2012. "Improved Multilevel Security with Latent Semantic Indexing," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/811, Ghent University, Faculty of Economics and Business Administration.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:137:y:2018:i:c:p:89-100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.