Advanced Search
MyIDEAS: Login to save this paper or follow this series

Long Run Variance Estimation Using Steep Origin Kernels without Truncation

Contents:

Author Info

Abstract

A new class of kernel estimates is proposed for long run variance (LRV) and heteroskedastic autocorrelation consistent (HAC) estimation. The kernels are called steep origin kernels and are related to a class of sharp origin kernels explored by the authors (2003) in other work. They are constructed by exponentiating a mother kernel (a conventional lag kernel that is smooth at the origin) and they can be used without truncation or bandwidth parameters. When the exponent is passed to infinity with the sample size, these kernels produce consistent LRV/HAC estimates. The new estimates are shown to have limit normal distributions, and formulae for the asymptotic bias and variance are derived. With steep origin kernel estimation, bandwidth selection is replaced by exponent selection and data-based selection is possible. Rules for exponent selection based on minimum mean squared error (MSE) criteria are developed. Optimal rates for steep origin kernels that are based on exponentiating quadratic kernels are shown to be faster than those based on exponentiating the Bartlett kernel, which produces the sharp origin kernel. It is further shown that, unlike conventional kernel estimation where an optimal choice of kernel is possible in terms of MSE criteria (Priestley, 1962; Andrews, 1991), steep origin kernels are asymptotically MSE equivalent, so that choice of mother kernel does not matter asymptotically. The approach is extended to spectral estimation at frequencies omega

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://cowles.econ.yale.edu/P/cd/d14a/d1437.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Cowles Foundation for Research in Economics, Yale University in its series Cowles Foundation Discussion Papers with number 1437.

as in new window
Length: 47 pages
Date of creation: Sep 2003
Date of revision:
Publication status: Published in Journal of Statistical Planning and Inference (2007), 137: 985-1023
Handle: RePEc:cwl:cwldpp:1437

Note: CFP 1178
Contact details of provider:
Postal: Yale University, Box 208281, New Haven, CT 06520-8281 USA
Phone: (203) 432-3702
Fax: (203) 432-6167
Web page: http://cowles.econ.yale.edu/
More information through EDIRC

Order Information:
Postal: Cowles Foundation, Yale University, Box 208281, New Haven, CT 06520-8281 USA

Related research

Keywords: Exponentiated kernel; Lag kernel; Long run variance; Optimal exponent; Spectral window; Spectrum;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Ole E Barndorff-Nielsen & Peter Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," OFRC Working Papers Series 2006fe05, Oxford Financial Research Centre.
  2. Peter C.B. Phillips & Yixiao Sun & Sainan Jin, 2005. "Improved HAR Inference," Cowles Foundation Discussion Papers 1513, Cowles Foundation for Research in Economics, Yale University.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1437. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Glena Ames).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.