IDEAS home Printed from https://ideas.repec.org/p/ces/ifowps/_330.html
   My bibliography  Save this paper

Steering the Energy Transition in a World of Intermittent Electricity Supply: Optimal Subsidies and Taxes for Renewables Storage

Author

Listed:
  • Carsten Helm
  • Mathias Mier

Abstract

We consider an economy in which competitive firms use three technologies for electricity production: pollutive fossils, intermittent renewables whose availability varies continuously over time, and storage. A Pigouvian tax implements the first-best solution. This is also the case for an electricity consumption tax that is supplemented by subsidies for renewables and a tax on storage, but not for high shares of renewables in the energy mix. We then analyze second-best subsidies for renewables and storage capacities when carbon pricing is imperfect. The subsidy rate for renewables decreases as electricity production becomes less reliant on fossils. The storage subsidy is usually negative as long as fossils contribute to filling the storage, but turns positive (and remains constant for linear demand) thereafter. This is because more storage capacity reduces the price during times of destorage, but raises it when electricity is taken from the market to fill the storage. This has countervailing effects on firms’ incentives to invest in fossil capacities, which are more pronounced for higher round-trip efficiency losses during a storage cycle. A numerical simulation illustrates that substantial subsidy payments are required even after fossils have been completely driven out of the market.

Suggested Citation

  • Carsten Helm & Mathias Mier, 2020. "Steering the Energy Transition in a World of Intermittent Electricity Supply: Optimal Subsidies and Taxes for Renewables Storage," ifo Working Paper Series 330, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
  • Handle: RePEc:ces:ifowps:_330
    as

    Download full text from publisher

    File URL: https://www.ifo.de/DocDL/wp-2020-330-mier-storage-subsidies.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Newbery, D M G & Stiglitz, J E, 1979. "The Theory of Commodity Price Stabilisation Rules: Welfare Impacts and Supply Responses," Economic Journal, Royal Economic Society, vol. 89(356), pages 799-817, December.
    2. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    3. Severin Borenstein & Stephen Holland, 2005. "On the Efficiency of Competitive Electricity Markets with Time-Invariant Retail Prices," RAND Journal of Economics, The RAND Corporation, vol. 36(3), pages 469-493, Autumn.
    4. Noah Kittner & Felix Lill & Daniel M. Kammen, 2017. "Energy storage deployment and innovation for the clean energy transition," Nature Energy, Nature, vol. 2(9), pages 1-6, September.
    5. Derek Lemoine & Ivan Rudik, 2017. "Steering the Climate System: Using Inertia to Lower the Cost of Policy," American Economic Review, American Economic Association, vol. 107(10), pages 2947-2957, October.
    6. Horsley, Anthony & Wrobel, Andrew J., 2002. "Efficiency rents of pumped-storage plants and their uses for operation and investment decisions," Journal of Economic Dynamics and Control, Elsevier, vol. 27(1), pages 109-142, November.
    7. Olivier De Groote & Frank Verboven, 2019. "Subsidies and Time Discounting in New Technology Adoption: Evidence from Solar Photovoltaic Systems," American Economic Review, American Economic Association, vol. 109(6), pages 2137-2172, June.
    8. Ambec, Stefan & Crampes, Claude, 2012. "Electricity provision with intermittent sources of energy," Resource and Energy Economics, Elsevier, vol. 34(3), pages 319-336.
    9. Aude Pommeret & Katheline Schubert, 2019. "Energy Transition with Variable and Intermittent Renewable Electricity Generation," CESifo Working Paper Series 7442, CESifo.
    10. Lancker, Kira & Quaas, Martin F., 2019. "Increasing marginal costs and the efficiency of differentiated feed-in tariffs," Energy Economics, Elsevier, vol. 83(C), pages 104-118.
    11. Pankaj Ghemawat & A. Michael Spence, 1985. "Learning Curve Spillovers and Market Performance," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 100(Supplemen), pages 839-852.
    12. Paul L. Joskow, 2011. "Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies," American Economic Review, American Economic Association, vol. 101(3), pages 238-241, May.
    13. Stefan Ambec & Claude Crampes, 2019. "Decarbonizing Electricity Generation with Intermittent Sources of Energy," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(6), pages 1105-1134.
    14. Carson, Richard T. & Novan, Kevin, 2013. "The private and social economics of bulk electricity storage," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 404-423.
    15. Eichner, Thomas & Runkel, Marco, 2014. "Subsidizing renewable energy under capital mobility," Journal of Public Economics, Elsevier, vol. 117(C), pages 50-59.
    16. Katrina Jessoe & David Rapson, 2014. "Knowledge Is (Less) Power: Experimental Evidence from Residential Energy Use," American Economic Review, American Economic Association, vol. 104(4), pages 1417-1438, April.
    17. Gravelle, H S E, 1976. "The Peak Load Problem with Feasible Storage," Economic Journal, Royal Economic Society, vol. 86(342), pages 256-277, June.
    18. Fredriksson, Per G., 1997. "The Political Economy of Pollution Taxes in a Small Open Economy," Journal of Environmental Economics and Management, Elsevier, vol. 33(1), pages 44-58, May.
    19. Durmaz, Tunc, 2014. "Energy Storage and Renewable Energy," Discussion Paper Series in Economics 18/2014, Norwegian School of Economics, Department of Economics.
    20. Geoffrey Heal, 2016. "Notes on the Economics of Energy Storage," NBER Working Papers 22752, National Bureau of Economic Research, Inc.
    21. Parry, Ian W H & Pizer, William A & Fischer, Carolyn, 2003. "How Large Are the Welfare Gains from Technological Innovation Induced by Environmental Policies?," Journal of Regulatory Economics, Springer, vol. 23(3), pages 237-255, May.
    22. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2016. "Are There Environmental Benefits from Driving Electric Vehicles? The Importance of Local Factors," American Economic Review, American Economic Association, vol. 106(12), pages 3700-3729, December.
    23. Gautam Gowrisankaran & Stanley S. Reynolds & Mario Samano, 2016. "Intermittency and the Value of Renewable Energy," Journal of Political Economy, University of Chicago Press, vol. 124(4), pages 1187-1234.
    24. Abrell, Jan & Rausch, Sebastian & Streitberger, Clemens, 2019. "The economics of renewable energy support," Journal of Public Economics, Elsevier, vol. 176(C), pages 94-117.
    25. Crampes, Claude & Moreaux, Michel, 2010. "Pumped storage and cost saving," Energy Economics, Elsevier, vol. 32(2), pages 325-333, March.
    26. Jarke, Johannes & Perino, Grischa, 2017. "Do renewable energy policies reduce carbon emissions? On caps and inter-industry leakage," Journal of Environmental Economics and Management, Elsevier, vol. 84(C), pages 102-124.
    27. Helm, Carsten & Mier, Mathias, 2019. "On the efficient market diffusion of intermittent renewable energies," Energy Economics, Elsevier, vol. 80(C), pages 812-830.
    28. Fabio Antoniou & Roland Strausz, 2017. "Feed-in Subsidies, Taxation, and Inefficient Entry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 925-940, August.
    29. Lawrence H. Goulder & Ian W. H. Parry, 2008. "Instrument Choice in Environmental Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 2(2), pages 152-174, Summer.
    30. Andor, Mark & Voss, Achim, 2016. "Optimal renewable-energy promotion: Capacity subsidies vs. generation subsidies," Resource and Energy Economics, Elsevier, vol. 45(C), pages 144-158.
    31. Mikhail Golosov & John Hassler & Per Krusell & Aleh Tsyvinski, 2014. "Optimal Taxes on Fossil Fuel in General Equilibrium," Econometrica, Econometric Society, vol. 82(1), pages 41-88, January.
    32. Després, Jacques & Mima, Silvana & Kitous, Alban & Criqui, Patrick & Hadjsaid, Nouredine & Noirot, Isabelle, 2017. "Storage as a flexibility option in power systems with high shares of variable renewable energy sources: a POLES-based analysis," Energy Economics, Elsevier, vol. 64(C), pages 638-650.
    33. A. Mitchell Polinsky, 1979. "Notes on the Symmetry of Taxes and Subsidies in Pollution Control," Canadian Journal of Economics, Canadian Economics Association, vol. 12(1), pages 75-83, February.
    34. Iversen, Emil B. & Morales, Juan M. & Møller, Jan K. & Madsen, Henrik, 2016. "Short-term probabilistic forecasting of wind speed using stochastic differential equations," International Journal of Forecasting, Elsevier, vol. 32(3), pages 981-990.
    35. Fell, Harrison & Linn, Joshua, 2013. "Renewable electricity policies, heterogeneity, and cost effectiveness," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 688-707.
    36. Abrell, Jan & Kosch, Mirjam & Rausch, Sebastian, 2019. "Carbon abatement with renewables: Evaluating wind and solar subsidies in Germany and Spain," Journal of Public Economics, Elsevier, vol. 169(C), pages 172-202.
    37. Brouwer, Anne Sjoerd & van den Broek, Machteld & Zappa, William & Turkenburg, Wim C. & Faaij, André, 2016. "Least-cost options for integrating intermittent renewables in low-carbon power systems," Applied Energy, Elsevier, vol. 161(C), pages 48-74.
    38. Carolyn Fischer & Louis Preonas & Richard G. Newell, 2017. "Environmental and Technology Policy Options in the Electricity Sector: Are We Deploying Too Many?," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(4), pages 959-984.
    39. Crampes, C. & Moreaux, M., 2001. "Water resource and power generation," International Journal of Industrial Organization, Elsevier, vol. 19(6), pages 975-997, May.
    40. Milliman, Scott R. & Prince, Raymond, 1989. "Firm incentives to promote technological change in pollution control," Journal of Environmental Economics and Management, Elsevier, vol. 17(3), pages 247-265, November.
    41. Ahmad Faruqui & Sanem Sergici, 2010. "Household response to dynamic pricing of electricity: a survey of 15 experiments," Journal of Regulatory Economics, Springer, vol. 38(2), pages 193-225, October.
    42. H.S.E. Gravelle, 1976. "Notes on the Peak Load Problem with Feasible Storage," Working Papers 39, Queen Mary University of London, School of Economics and Finance.
    43. Björn Nykvist & Måns Nilsson, 2015. "Rapidly falling costs of battery packs for electric vehicles," Nature Climate Change, Nature, vol. 5(4), pages 329-332, April.
    44. Paul L. Joskow & Catherine D. Wolfram, 2012. "Dynamic Pricing of Electricity," American Economic Review, American Economic Association, vol. 102(3), pages 381-385, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mier, Mathias, 2021. "Efficient pricing of electricity revisited," Energy Economics, Elsevier, vol. 104(C).
    2. Ryszard Bartnik & Dariusz Pączko, 2021. "Methodology for Analysing Electricity Generation Unit Costs in Renewable Energy Sources (RES)," Energies, MDPI, vol. 14(21), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helm, Carsten & Mier, Mathias, 2021. "Steering the energy transition in a world of intermittent electricity supply: Optimal subsidies and taxes for renewables and storage," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    2. Helm, Carsten & Mier, Mathias, 2019. "Subsidising Renewables but Taxing Storage? Second-Best Policies with Imperfect Carbon Pricing," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203539, Verein für Socialpolitik / German Economic Association.
    3. Carsten Helm & Mathias Mier, 2018. "Subsidising Renewables but Taxing Storage? Second-Best Policies with Imperfect Pricing," Working Papers V-413-18, University of Oldenburg, Department of Economics, revised Oct 2018.
    4. Helm, Carsten & Mier, Mathias, 2019. "On the efficient market diffusion of intermittent renewable energies," Energy Economics, Elsevier, vol. 80(C), pages 812-830.
    5. Alexander Haupt, 2023. "Environmental Policy and Renewable Energy in an Imperfectly Competitive Market," CESifo Working Paper Series 10524, CESifo.
    6. Fabra, Natalia, 2021. "The energy transition: An industrial economics perspective," International Journal of Industrial Organization, Elsevier, vol. 79(C).
    7. Durmaz, Tunç, 2016. "Precautionary Storage in Electricity Markets," Discussion Papers 2016/5, Norwegian School of Economics, Department of Business and Management Science.
    8. Helm, Carsten & Mier, Mathias, 2016. "Efficient diffusion of renewable energies: A roller-coaster ride," VfS Annual Conference 2016 (Augsburg): Demographic Change 145893, Verein für Socialpolitik / German Economic Association.
    9. Heimvik, Arild & Amundsen, Eirik S., 2021. "Prices vs. percentages: Use of tradable green certificates as an instrument of greenhouse gas mitigation," Energy Economics, Elsevier, vol. 99(C).
    10. Neetzow, Paul, 2021. "The effects of power system flexibility on the efficient transition to renewable generation," Applied Energy, Elsevier, vol. 283(C).
    11. Abrell, Jan & Rausch, Sebastian & Streitberger, Clemens, 2019. "Buffering volatility: Storage investments and technology-specific renewable energy support," Energy Economics, Elsevier, vol. 84(S1).
    12. Pommeret, Aude & Schubert, Katheline, 2022. "Optimal energy transition with variable and intermittent renewable electricity generation," Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
    13. Bialek, Sylwia & Ünel, Burçin, 2022. "Efficiency in wholesale electricity markets: On the role of externalities and subsidies," Energy Economics, Elsevier, vol. 109(C).
    14. Nandeeta Neerunjun & Hubert Stahn, 2023. "Renewable energy support: pre-announced policies and (in)-efficiency," AMSE Working Papers 2335, Aix-Marseille School of Economics, France.
    15. Pahle, Michael & Schill, Wolf-Peter & Gambardella, Christian & Tietjen, Oliver, 2016. "Renewable Energy Support, Negative Prices, and Real-time Pricing," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 37, pages 147-169.
    16. Stefan Lamp & Mario Samano, 2023. "(Mis)allocation of Renewable Energy Sources," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(1), pages 195-229.
    17. Cameron Hepburn & Jacquelyn Pless & David Popp, 2018. "Policy Brief—Encouraging Innovation that Protects Environmental Systems: Five Policy Proposals," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 154-169.
    18. Ambec, Stefan & Crampes, Claude, 2021. "Real-time electricity pricing to balance green energy intermittency," Energy Economics, Elsevier, vol. 94(C).
    19. Mier, Mathias & Weissbart, Christoph, 2020. "Power markets in transition: Decarbonization, energy efficiency, and short-term demand response," Energy Economics, Elsevier, vol. 86(C).
    20. Matti Liski & Iivo Vehviläinen, 2016. "Gone with the Wind? An Empirical Analysis of the Renewable Energy Rent Transfer," CESifo Working Paper Series 6250, CESifo.

    More about this item

    Keywords

    intermittent renewable energies; electricity storage; carbon externality; subsidies; peak-load pricing; optimal control;
    All these keywords.

    JEL classification:

    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ifowps:_330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klaus Wohlrabe (email available below). General contact details of provider: https://edirc.repec.org/data/ifooode.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.