IDEAS home Printed from https://ideas.repec.org/p/cer/papers/wp699.html
   My bibliography  Save this paper

Shrinkage for Gaussian and t Copulas in Ultra-High Dimensions

Author

Listed:
  • Stanislav Anatolyev
  • Vladimir Pyrlik

Abstract

Copulas are a convenient framework to synthesize joint distributions, particularly in higher dimensions. Currently, copula-based high dimensional settings are used for as many as a few hundred variables and require large data samples for estimation to be precise. In this paper, we employ shrinkage techniques for large covariance matrices in the problem of estimation of Gaussian and t copulas whose dimensionality goes well beyond that typical in the literature. Specifically, we use the covariance matrix shrinkage of Ledoit and Wolf to estimate large matrix parameters of Gaussian and t copulas for up to thousands of variables, using up to 20 times lower sample sizes. The simulation study shows that the shrinkage estimation significantly outperforms traditional estimators, both in low and especially high dimensions. We also apply this approach to the problem of allocation of large portfolios.

Suggested Citation

  • Stanislav Anatolyev & Vladimir Pyrlik, 2021. "Shrinkage for Gaussian and t Copulas in Ultra-High Dimensions," CERGE-EI Working Papers wp699, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
  • Handle: RePEc:cer:papers:wp699
    as

    Download full text from publisher

    File URL: http://www.cerge-ei.cz/pdf/wp/Wp699.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michaud, Richard O. & Michaud, Robert O., 2008. "Efficient Asset Management: A Practical Guide to Stock Portfolio Optimization and Asset Allocation," OUP Catalogue, Oxford University Press, edition 2, number 9780195331912.
    2. Müller, Dominik & Czado, Claudia, 2019. "Dependence modelling in ultra high dimensions with vine copulas and the Graphical Lasso," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 211-232.
    3. Imen Zorgati & Faten Lakhal & Elmoez Zaabi, 2019. "Financial contagion in the subprime crisis context: A copula approach," Post-Print hal-02052406, HAL.
    4. Gianluca De Nard & Olivier Ledoit & Michael Wolf, 2018. "Factor models for portfolio selection in large dimensions: the good, the better and the ugly," ECON - Working Papers 290, Department of Economics - University of Zurich, revised Dec 2018.
    5. He, Yong & Zhang, Liang & Ji, Jiadong & Zhang, Xinsheng, 2019. "Robust feature screening for elliptical copula regression model," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 568-582.
    6. Sukcharoen, Kunlapath & Zohrabyan, Tatevik & Leatham, David & Wu, Ximing, 2014. "Interdependence of oil prices and stock market indices: A copula approach," Energy Economics, Elsevier, vol. 44(C), pages 331-339.
    7. Ning, Cathy, 2010. "Dependence structure between the equity market and the foreign exchange market-A copula approach," Journal of International Money and Finance, Elsevier, vol. 29(5), pages 743-759, September.
    8. Dong Hwan Oh & Andrew J. Patton, 2013. "Simulated Method of Moments Estimation for Copula-Based Multivariate Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 689-700, June.
    9. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    10. Hofert, Marius & Maechler, Martin, 2011. "Nested Archimedean Copulas Meet R: The nacopula Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 39(i09).
    11. Kojadinovic, Ivan & Yan, Jun, 2010. "Comparison of three semiparametric methods for estimating dependence parameters in copula models," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 52-63, August.
    12. Oh, Dong Hwan & Patton, Andrew J., 2016. "High-dimensional copula-based distributions with mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 349-366.
    13. Frederick Wong, 2003. "Efficient estimation of covariance selection models," Biometrika, Biometrika Trust, vol. 90(4), pages 809-830, December.
    14. Wen, Xiaoqian & Wei, Yu & Huang, Dengshi, 2012. "Measuring contagion between energy market and stock market during financial crisis: A copula approach," Energy Economics, Elsevier, vol. 34(5), pages 1435-1446.
    15. Robert F. Engle & Olivier Ledoit & Michael Wolf, 2019. "Large Dynamic Covariance Matrices," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 363-375, April.
    16. Campbell Harvey & John Liechty & Merrill Liechty & Peter Muller, 2010. "Portfolio selection with higher moments," Quantitative Finance, Taylor & Francis Journals, vol. 10(5), pages 469-485.
    17. Kojadinovic, Ivan & Yan, Jun, 2010. "Modeling Multivariate Distributions with Continuous Margins Using the copula R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 34(i09).
    18. David M. Zimmer, 2012. "The Role of Copulas in the Housing Crisis," The Review of Economics and Statistics, MIT Press, vol. 94(2), pages 607-620, May.
    19. Yan, Jun, 2007. "Enjoy the Joy of Copulas: With a Package copula," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 21(i04).
    20. Dong Hwan Oh & Andrew J. Patton, 2017. "Modeling Dependence in High Dimensions With Factor Copulas," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 139-154, January.
    21. Hörmann, Wolfgang & Sak, Halis, 2010. "t-Copula generation for control variates," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(4), pages 782-790.
    22. Dißmann, J. & Brechmann, E.C. & Czado, C. & Kurowicka, D., 2013. "Selecting and estimating regular vine copulae and application to financial returns," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 52-69.
    23. Jules Binsbergen & Michael Brandt, 2007. "Solving dynamic portfolio choice problems by recursing on optimized portfolio weights or on the value function?," Computational Economics, Springer;Society for Computational Economics, vol. 29(3), pages 355-367, May.
    24. Michael S. Smith & Quan Gan & Robert J. Kohn, 2012. "Modelling dependence using skew t copulas: Bayesian inference and applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(3), pages 500-522, April.
    25. Karmakar, Madhusudan, 2017. "Dependence structure and portfolio risk in Indian foreign exchange market: A GARCH-EVT-Copula approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 64(C), pages 275-291.
    26. Zorgati, Imen & Lakhal, Faten & Zaabi, Elmoez, 2019. "Financial contagion in the subprime crisis context: A copula approach," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 269-282.
    27. Massimo Guidolin & Allan Timmermann, 2008. "International asset allocation under regime switching, skew, and kurtosis preferences," The Review of Financial Studies, Society for Financial Studies, vol. 21(2), pages 889-935, April.
    28. Huang, Jen-Jsung & Lee, Kuo-Jung & Liang, Hueimei & Lin, Wei-Fu, 2009. "Estimating value at risk of portfolio by conditional copula-GARCH method," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 315-324, December.
    29. Jianhua Z. Huang & Naiping Liu & Mohsen Pourahmadi & Linxu Liu, 2006. "Covariance matrix selection and estimation via penalised normal likelihood," Biometrika, Biometrika Trust, vol. 93(1), pages 85-98, March.
    30. Hofert, Marius & Mächler, Martin & McNeil, Alexander J., 2012. "Likelihood inference for Archimedean copulas in high dimensions under known margins," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 133-150.
    31. Fu, Liya & Wang, You-Gan, 2016. "Efficient parameter estimation via Gaussian copulas for quantile regression with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 492-502.
    32. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    33. Michael J. Daniels & Robert E. Kass, 2001. "Shrinkage Estimators for Covariance Matrices," Biometrics, The International Biometric Society, vol. 57(4), pages 1173-1184, December.
    34. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    35. Han, Yingwei & Li, Ping & Xia, Yong, 2017. "Dynamic robust portfolio selection with copulas," Finance Research Letters, Elsevier, vol. 21(C), pages 190-200.
    36. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    37. Lourme, Alexandre & Maurer, Frantz, 2017. "Testing the Gaussian and Student's t copulas in a risk management framework," Economic Modelling, Elsevier, vol. 67(C), pages 203-214.
    38. He, Yong & Zhang, Xinsheng & Zhang, Liwen, 2018. "Variable selection for high dimensional Gaussian copula regression model: An adaptive hypothesis testing procedure," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 132-150.
    39. Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
    40. Minjung Kwak, 2017. "Estimation and inference of the joint conditional distribution for multivariate longitudinal data using nonparametric copulas," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(3), pages 491-514, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anatolyev, Stanislav & Pyrlik, Vladimir, 2022. "Copula shrinkage and portfolio allocation in ultra-high dimensions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    2. Apergis, Nicholas & Gozgor, Giray & Lau, Chi Keung Marco & Wang, Shixuan, 2020. "Dependence structure in the Australian electricity markets: New evidence from regular vine copulae," Energy Economics, Elsevier, vol. 90(C).
    3. Nguyen, Hoang & Virbickaitė, Audronė, 2023. "Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models," Energy Economics, Elsevier, vol. 124(C).
    4. Dong Hwan Oh & Andrew J. Patton, 2017. "Modeling Dependence in High Dimensions With Factor Copulas," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 139-154, January.
    5. Jäschke, Stefan, 2014. "Estimation of risk measures in energy portfolios using modern copula techniques," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 359-376.
    6. Jinyu Zhang & Kang Gao & Yong Li & Qiaosen Zhang, 2022. "Maximum Likelihood Estimation Methods for Copula Models," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 99-124, June.
    7. Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
    8. Manner, Hans & Stark, Florian & Wied, Dominik, 2019. "Testing for structural breaks in factor copula models," Journal of Econometrics, Elsevier, vol. 208(2), pages 324-345.
    9. Smith, Michael Stanley & Maneesoonthorn, Worapree, 2018. "Inversion copulas from nonlinear state space models with an application to inflation forecasting," International Journal of Forecasting, Elsevier, vol. 34(3), pages 389-407.
    10. Hofert, Marius & Prasad, Avinash & Zhu, Mu, 2022. "Multivariate time-series modeling with generative neural networks," Econometrics and Statistics, Elsevier, vol. 23(C), pages 147-164.
    11. Thomas Conlon & John Cotter & Iason Kynigakis, 2021. "Machine Learning and Factor-Based Portfolio Optimization," Papers 2107.13866, arXiv.org.
    12. Tian, Maoxi & Alshater, Muneer M. & Yoon, Seong-Min, 2022. "Dynamic risk spillovers from oil to stock markets: Fresh evidence from GARCH copula quantile regression-based CoVaR model," Energy Economics, Elsevier, vol. 115(C).
    13. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    14. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    15. Adlane Haffar & Éric Le Fur, 2022. "Dependence structure of CAT bonds and portfolio diversification: a copula-GARCH approach," Journal of Asset Management, Palgrave Macmillan, vol. 23(4), pages 297-309, July.
    16. Nagler, Thomas & Krüger, Daniel & Min, Aleksey, 2022. "Stationary vine copula models for multivariate time series," Journal of Econometrics, Elsevier, vol. 227(2), pages 305-324.
    17. Su, Xiaoshan & Bai, Manying & Han, Yingwei, 2021. "Robust portfolio selection with regime switching and asymmetric dependence," Economic Modelling, Elsevier, vol. 99(C).
    18. Smith, Michael Stanley, 2023. "Implicit Copulas: An Overview," Econometrics and Statistics, Elsevier, vol. 28(C), pages 81-104.
    19. GRIGORIADIS, Vasilis & EMMANOUILIDES, Christos & FOUSEKIS, Panos, 2016. "The Integration Of Pigmeat Markets In The Eu. Evidence From A Regular Mixed Vine Copula," Review of Agricultural and Applied Economics (RAAE), Faculty of Economics and Management, Slovak Agricultural University in Nitra, vol. 19(1), pages 1-10, March.
    20. Manner, Hans & Alavi Fard, Farzad & Pourkhanali, Armin & Tafakori, Laleh, 2019. "Forecasting the joint distribution of Australian electricity prices using dynamic vine copulae," Energy Economics, Elsevier, vol. 78(C), pages 143-164.

    More about this item

    Keywords

    Gaussian copula; t copula; high dimensionality; large covariance matrices; shrinkage; portfolio allocation;
    All these keywords.

    JEL classification:

    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cer:papers:wp699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lucie Vasiljevova (email available below). General contact details of provider: https://edirc.repec.org/data/eiacacz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.