IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v47y2010i1p52-63.html
   My bibliography  Save this article

Comparison of three semiparametric methods for estimating dependence parameters in copula models

Author

Listed:
  • Kojadinovic, Ivan
  • Yan, Jun

Abstract

Three semiparametric methods for estimating dependence parameters in copula models are compared, namely maximum pseudo-likelihood estimation and the two method-of-moment approaches based on the inversion of Spearman's rho and Kendall's tau. For each of these three asymptotically normal estimators, an estimator of their asymptotic (co)variance is stated in three different situations, namely the bivariate one-parameter case, the multivariate one-parameter case and the multivariate multiparameter case. An extensive Monte Carlo study is carried out to compare the finite-sample performance of the three estimators under consideration in these three situations. In the one-parameter case, it involves up to six bivariate and four-variate copula families, and up to five levels of dependence. In the multiparameter case, attention is restricted to trivariate and four-variate normal and t copulas. The maximum pseudo-likelihood estimator appears as the best choice in terms of mean square error in all situations except for small and weakly dependent samples. It is followed by the method-of-moment estimator based on Kendall's tau, which overall appears to be significantly better than its analogue based on Spearman's rho. The simulation results are complemented by asymptotic relative efficiency calculations. The numerical computation of Spearman's rho, Kendall's tau and their derivatives in the case of copula families for which explicit expressions are not available is also investigated.

Suggested Citation

  • Kojadinovic, Ivan & Yan, Jun, 2010. "Comparison of three semiparametric methods for estimating dependence parameters in copula models," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 52-63, August.
  • Handle: RePEc:eee:insuma:v:47:y:2010:i:1:p:52-63
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(10)00036-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Xiaohong & Fan, Yanqin & Tsyrennikov, Viktor, 2006. "Efficient Estimation of Semiparametric Multivariate Copula Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1228-1240, September.
    2. Joe, Harry, 2005. "Asymptotic efficiency of the two-stage estimation method for copula-based models," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 401-419, June.
    3. Edward Frees & Emiliano Valdez, 1998. "Understanding Relationships Using Copulas," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 1-25.
    4. Borkowf, Craig B., 2002. "Computing the nonnull asymptotic variance and the asymptotic relative efficiency of Spearman's rank correlation," Computational Statistics & Data Analysis, Elsevier, vol. 39(3), pages 271-286, May.
    5. Kojadinovic, Ivan & Yan, Jun, 2010. "Modeling Multivariate Distributions with Continuous Margins Using the copula R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 34(i09).
    6. Genest, Christian & Quessy, Jean-François & Rémillard, Bruno, 2006. "On the joint asymptotic behavior of two rank-based estimators of the association parameter in the gamma frailty model," Statistics & Probability Letters, Elsevier, vol. 76(1), pages 10-18, January.
    7. Kim, Gunky & Silvapulle, Mervyn J. & Silvapulle, Paramsothy, 2007. "Comparison of semiparametric and parametric methods for estimating copulas," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2836-2850, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kateryna Tkach & Chiara Gigliarano, 2018. "Multidimensional poverty measurement: dependence between well-being dimensions using copula function," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 72(3), pages 89-100, July-Sept.
    2. Bolancé, Catalina & Bahraoui, Zuhair & Artís, Manuel, 2014. "Quantifying the risk using copulae with nonparametric marginals," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 46-56.
    3. Liu, Bin & Shi, Yimin & Ng, Hon Keung Tony & Shang, Xiangwen, 2021. "Nonparametric Bayesian reliability analysis of masked data with dependent competing risks," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    4. Anatolyev, Stanislav & Pyrlik, Vladimir, 2022. "Copula shrinkage and portfolio allocation in ultra-high dimensions," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    5. Erlend Bø & Peter Lambert & Thor Thoresen, 2012. "Horizontal inequity under a dual income tax system: principles and measurement," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 19(5), pages 625-640, October.
    6. Stanislav Anatolyev & Vladimir Pyrlik, 2021. "Shrinkage for Gaussian and t Copulas in Ultra-High Dimensions," CERGE-EI Working Papers wp699, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    7. Jäschke, Stefan, 2014. "Estimation of risk measures in energy portfolios using modern copula techniques," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 359-376.
    8. Kellner, Ralf & Gatzert, Nadine, 2013. "Estimating the basis risk of index-linked hedging strategies using multivariate extreme value theory," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4353-4367.
    9. Knyazev, Alexander & Lepekhin, Oleg & Shemyakin, Arkady, 2016. "Joint distribution of stock indices: Methodological aspects of construction and selection of copula models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 42, pages 30-53.
    10. Mikhail Semenov & Daulet Smagulov, 2017. "Portfolio Risk Assessment using Copula Models," Papers 1707.03516, arXiv.org.
    11. Calabrese, Raffaella & Osmetti, Silvia Angela, 2019. "A new approach to measure systemic risk: A bivariate copula model for dependent censored data," European Journal of Operational Research, Elsevier, vol. 279(3), pages 1053-1064.
    12. Vergni, L. & Todisco, F. & Di Lena, B. & Mannocchi, F., 2020. "Bivariate analysis of drought duration and severity for irrigation planning," Agricultural Water Management, Elsevier, vol. 229(C).
    13. Hofert, Marius & Mächler, Martin & McNeil, Alexander J., 2012. "Likelihood inference for Archimedean copulas in high dimensions under known margins," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 133-150.
    14. M. Reddy & Poulomi Ganguli, 2012. "Bivariate Flood Frequency Analysis of Upper Godavari River Flows Using Archimedean Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 3995-4018, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    2. Di Bernardino Elena & Rullière Didier, 2013. "On certain transformations of Archimedean copulas: Application to the non-parametric estimation of their generators," Dependence Modeling, De Gruyter, vol. 1, pages 1-36, October.
    3. Lawless, Jerald F. & Yilmaz, Yildiz E., 2011. "Comparison of semiparametric maximum likelihood estimation and two-stage semiparametric estimation in copula models," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2446-2455, July.
    4. Bouezmarni, T. & Rombouts, J.V.K., 2009. "Semiparametric multivariate density estimation for positive data using copulas," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2040-2054, April.
    5. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    6. Liebscher, Eckhard, 2008. "Construction of asymmetric multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2234-2250, November.
    7. Almeida, Carlos & Czado, Claudia, 2012. "Efficient Bayesian inference for stochastic time-varying copula models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1511-1527.
    8. Christian Genest & Johanna Nešlehová & Johanna Ziegel, 2011. "Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 223-256, August.
    9. Hobæk Haff, Ingrid, 2012. "Comparison of estimators for pair-copula constructions," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 91-105.
    10. Calabrese, Raffaella & Osmetti, Silvia Angela, 2019. "A new approach to measure systemic risk: A bivariate copula model for dependent censored data," European Journal of Operational Research, Elsevier, vol. 279(3), pages 1053-1064.
    11. Hofert, Marius & Mächler, Martin & McNeil, Alexander J., 2012. "Likelihood inference for Archimedean copulas in high dimensions under known margins," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 133-150.
    12. Sukjin Han & Sungwon Lee, 2019. "Estimation in a generalization of bivariate probit models with dummy endogenous regressors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(6), pages 994-1015, September.
    13. Elisa Luciano & Jaap Spreeuw & Elena Vigna, 2012. "Evolution of coupled lives' dependency across generations and pricing impact," Carlo Alberto Notebooks 258, Collegio Carlo Alberto.
    14. Bouezmarni Taoufik & Ghouch El & Taamouti Abderrahim, 2013. "Bernstein estimator for unbounded copula densities," Statistics & Risk Modeling, De Gruyter, vol. 30(4), pages 343-360, December.
    15. Ko, Vinnie & Hjort, Nils Lid, 2019. "Model robust inference with two-stage maximum likelihood estimation for copulas," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 362-381.
    16. repec:hal:wpaper:hal-00834000 is not listed on IDEAS
    17. Bodnar, Olha & Bodnar, Taras & Gupta, Arjun K., 2010. "Estimation and inference for dependence in multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 869-881, April.
    18. Braekers, Roel & Van Keilegom, Ingrid, 2009. "Flexible modeling based on copulas in nonparametric median regression," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1270-1281, July.
    19. Zhao, XiaoBing & Zhou, Xian, 2010. "Applying copula models to individual claim loss reserving methods," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 290-299, April.
    20. Kojadinovic, Jean D. & Segers, Johan & Yan, Yun, 2011. "Large-sample tests of extreme-value dependence for multivariate copulas," LIDAM Discussion Papers ISBA 2011012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    21. Zheng Wei & Seongyong Kim & Boseung Choi & Daeyoung Kim, 2019. "Multivariate Skew Normal Copula for Asymmetric Dependence: Estimation and Application," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 365-387, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:47:y:2010:i:1:p:52-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.