Advanced Search
MyIDEAS: Login

Asymptotic efficiency of the two-stage estimation method for copula-based models

Contents:

Author Info

  • Joe, Harry
Registered author(s):

    Abstract

    For multivariate copula-based models for which maximum likelihood is computationally difficult, a two-stage estimation procedure has been proposed previously; the first stage involves maximum likelihood from univariate margins, and the second stage involves maximum likelihood of the dependence parameters with the univariate parameters held fixed from the first stage. Using the theory of inference functions, a partitioned matrix in a form amenable to analysis is obtained for the asymptotic covariance matrix of the two-stage estimator. The asymptotic relative efficiency of the two-stage estimation procedure compared with maximum likelihood estimation is studied. Analysis of the limiting cases of the independence copula and Frechet upper bound help to determine common patterns in the efficiency as the dependence in the model increases. For the Frechet upper bound, the two-stage estimation procedure can sometimes be equivalent to maximum likelihood estimation for the univariate parameters. Numerical results are shown for some models, including multivariate ordinal probit and bivariate extreme value distributions, to indicate the typical level of asymptotic efficiency for discrete and continuous data.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6WK9-4D34KDH-1/2/8874eb26da5b13b9dac2db069642d877
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 94 (2005)
    Issue (Month): 2 (June)
    Pages: 401-419

    as in new window
    Handle: RePEc:eee:jmvana:v:94:y:2005:i:2:p:401-419

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

    Order Information:
    Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=622892&ref=622892_01_ooc_1&version=01

    Related research

    Keywords: Copula Multivariate non-normal Estimating or inference functions Frechet bounds Latent value models Generalized extreme value;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Ulf Olsson, 1979. "Maximum likelihood estimation of the polychoric correlation coefficient," Psychometrika, Springer, vol. 44(4), pages 443-460, December.
    2. Bengt Muthén, 1978. "Contributions to factor analysis of dichotomous variables," Psychometrika, Springer, vol. 43(4), pages 551-560, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:94:y:2005:i:2:p:401-419. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.