IDEAS home Printed from https://ideas.repec.org/p/bzn/wpaper/bemps67.html
   My bibliography  Save this paper

Congestion and Incentives in the Age of Driverless Fleets

Author

Listed:
  • Federico Boffa

    (Free University of Bolzano‐Bozen, Faculty of Economics and Management and Collegio Carlo Alberto)

  • Alessandro Fedele

    (Free University of Bolzano‐Bozen, Faculty of Economics and Management)

  • Alberto Iozzi

    (Università di Roma 'Tor Vergata' and SOAS University of London)

Abstract

Fleets of ridesharing companies, such as Uber and Lyft, are providing an increasing share of passenger travel. Autonomous vehicles will likely only magnify this trend. We analyze the welfare e ects of the transition from a decentralized regime, in which travelers are atomistic and do not internalize the congestion externality, to a centralized regime, where travelers are supplied by a monopolist's fleet. The monopolist can sort travelers across routes based on their congestion disutility, and ration them. A centralized regime is always welfare-reducing when the monopolist chooses not to ration travelers. We then characterize optimal road taxes throughout the transition.

Suggested Citation

  • Federico Boffa & Alessandro Fedele & Alberto Iozzi, 2020. "Congestion and Incentives in the Age of Driverless Fleets," BEMPS - Bozen Economics & Management Paper Series BEMPS67, Faculty of Economics and Management at the Free University of Bozen.
  • Handle: RePEc:bzn:wpaper:bemps67
    as

    Download full text from publisher

    File URL: https://repec.unibz.it/bemps67.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Pels, Eric & Verhoef, Erik T., 2004. "The economics of airport congestion pricing," Journal of Urban Economics, Elsevier, vol. 55(2), pages 257-277, March.
    2. Brueckner, Jan K., 2005. "Internalization of airport congestion: A network analysis," International Journal of Industrial Organization, Elsevier, vol. 23(7-8), pages 599-614, September.
    3. Rodrigo Montes & Wilfried Sand-Zantman & Tommaso Valletti, 2019. "The Value of Personal Information in Online Markets with Endogenous Privacy," Management Science, INFORMS, vol. 65(3), pages 1342-1362, March.
    4. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1990. "Economics of a bottleneck," Journal of Urban Economics, Elsevier, vol. 27(1), pages 111-130, January.
    5. Silva, Hugo E. & Verhoef, Erik T., 2013. "Optimal pricing of flights and passengers at congested airports and the efficiency of atomistic charges," Journal of Public Economics, Elsevier, vol. 106(C), pages 1-13.
    6. van den Berg, Vincent A.C. & Verhoef, Erik T., 2016. "Autonomous cars and dynamic bottleneck congestion: The effects on capacity, value of time and preference heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 43-60.
    7. Daniel, Joseph I, 1995. "Congestion Pricing and Capacity of Large Hub Airports: A Bottleneck Model with Stochastic Queues," Econometrica, Econometric Society, vol. 63(2), pages 327-370, March.
    8. Kenneth A. Small & Clifford Winston & Jia Yan, 2005. "Differentiated Road Pricing, Express Lanes and Carpools: Exploiting Heterogeneous Preferences in Policy Design," Working Papers 050616, University of California-Irvine, Department of Economics, revised Mar 2006.
    9. Kenneth A. Small & Clifford Winston & Jia Yan, 2005. "Uncovering the Distribution of Motorists' Preferences for Travel Time and Reliability," Econometrica, Econometric Society, vol. 73(4), pages 1367-1382, July.
    10. Cremer, Helmuth & Thisse, Jacques-Francois, 1994. "Commodity Taxation in a Differentiated Oligopoly," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 613-633, August.
    11. Hugo E. Silva & Robin Lindsey & André de Palma & Vincent A. C. van den Berg, 2017. "On the Existence and Uniqueness of Equilibrium in the Bottleneck Model with Atomic Users," Transportation Science, INFORMS, vol. 51(3), pages 863-881, August.
    12. Gilles Duranton & Matthew A. Turner, 2011. "The Fundamental Law of Road Congestion: Evidence from US Cities," American Economic Review, American Economic Association, vol. 101(6), pages 2616-2652, October.
    13. Rupp, Nicholas G., 2009. "Do carriers internalize congestion costs? Empirical evidence on the internalization question," Journal of Urban Economics, Elsevier, vol. 65(1), pages 24-37, January.
    14. Edmond Awad & Sohan Dsouza & Richard Kim & Jonathan Schulz & Joseph Henrich & Azim Shariff & Jean-François Bonnefon & Iyad Rahwan, 2018. "The Moral Machine experiment," Nature, Nature, vol. 563(7729), pages 59-64, November.
    15. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    16. Lambertini, Luca & Mosca, Manuela, 1999. "On the Regulation of a Vertically Differentiated Market," Australian Economic Papers, Wiley Blackwell, vol. 38(4), pages 354-366, December.
    17. Vincent A.C. van den Berg & Erik T. Verhoef, 2015. "Robot Cars and Dynamic Bottleneck Congestion: The Effects on Capacity, Value of Time and Preference Heterogeneity," Tinbergen Institute Discussion Papers 15-062/VIII, Tinbergen Institute, revised 11 Jul 2016.
    18. Basso, Leonardo J. & Zhang, Anming, 2007. "Congestible facility rivalry in vertical structures," Journal of Urban Economics, Elsevier, vol. 61(2), pages 218-237, March.
    19. Jan K. Brueckner, 2002. "Airport Congestion When Carriers Have Market Power," American Economic Review, American Economic Association, vol. 92(5), pages 1357-1375, December.
    20. Small, Kenneth A., 1992. "Using the Revenues from Congestion Pricing," University of California Transportation Center, Working Papers qt32p9m3mm, University of California Transportation Center.
    21. Christopher Mayer & Todd Sinai, 2003. "Network Effects, Congestion Externalities, and Air Traffic Delays: Or Why Not All Delays Are Evil," American Economic Review, American Economic Association, vol. 93(4), pages 1194-1215, September.
    22. Mussa, Michael & Rosen, Sherwin, 1978. "Monopoly and product quality," Journal of Economic Theory, Elsevier, vol. 18(2), pages 301-317, August.
    23. Michael Ostrovsky & Michael Schwarz, 2018. "Carpooling and the Economics of Self-Driving Cars," NBER Working Papers 24349, National Bureau of Economic Research, Inc.
    24. A. Michael Spence, 1975. "Monopoly, Quality, and Regulation," Bell Journal of Economics, The RAND Corporation, vol. 6(2), pages 417-429, Autumn.
    25. Daniel, Joseph I. & Harback, Katherine Thomas, 2008. "(When) Do hub airlines internalize their self-imposed congestion delays?," Journal of Urban Economics, Elsevier, vol. 63(2), pages 583-612, March.
    26. Achim I. Czerny & Anming Zhang, 2015. "Third-degree price discrimination in the presence of congestion externality," Canadian Journal of Economics, Canadian Economics Association, vol. 48(4), pages 1430-1455, November.
    27. Raphaël Lamotte & André de Palma & Nikolas Geroliminis, 2016. "Sharing the road: the economics of autonomous vehicles," Working Papers hal-01281425, HAL.
    28. Hugo E. Silva & Erik T. Verhoef, 2011. "Optimal Pricing of Flights and Passengers at Congested Airports: The Efficiency of Atomistic Charges," Tinbergen Institute Discussion Papers 11-179/3, Tinbergen Institute, revised 28 Mar 2013.
    29. Small, Kenneth A., 2012. "Valuation of travel time," Economics of Transportation, Elsevier, vol. 1(1), pages 2-14.
    30. Luca Lambertini & Manuela Mosca, 1999. "On the Regulation of a Vertically Differentiated Market," Australian Economic Papers, Wiley Blackwell, vol. 38(4), pages 354-366, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silva, Hugo E. & Verhoef, Erik T. & van den Berg, Vincent A.C., 2014. "Airlines’ strategic interactions and airport pricing in a dynamic bottleneck model of congestion," Journal of Urban Economics, Elsevier, vol. 80(C), pages 13-27.
    2. Verhoef, Erik T. & Silva, Hugo E., 2017. "Dynamic equilibrium at a congestible facility under market power," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 174-192.
    3. Hugo E. Silva & Robin Lindsey & André de Palma & Vincent A. C. van den Berg, 2017. "On the Existence and Uniqueness of Equilibrium in the Bottleneck Model with Atomic Users," Transportation Science, INFORMS, vol. 51(3), pages 863-881, August.
    4. Czerny, Achim I. & Zhang, Anming, 2014. "Airport peak-load pricing revisited: The case of peak and uniform tolls," Economics of Transportation, Elsevier, vol. 3(1), pages 90-101.
    5. Guo, Huanxiu & Jiang, Changmin & Wan, Yulai, 2018. "Can airfares tell? An alternative empirical strategy for airport congestion internalization," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 648-661.
    6. Jiang, Changmin & Zhang, Anming, 2015. "Airport congestion pricing and terminal investment: Effects of terminal congestion, passenger types, and concessionsAuthor-Name: Wan, Yulai," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 91-113.
    7. Gillen, David & Jacquillat, Alexandre & Odoni, Amedeo R., 2016. "Airport demand management: The operations research and economics perspectives and potential synergies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 495-513.
    8. Dixit, Aasheesh & Jakhar, Suresh Kumar, 2021. "Airport capacity management: A review and bibliometric analysis," Journal of Air Transport Management, Elsevier, vol. 91(C).
    9. Silva, Hugo E. & Verhoef, Erik T., 2013. "Optimal pricing of flights and passengers at congested airports and the efficiency of atomistic charges," Journal of Public Economics, Elsevier, vol. 106(C), pages 1-13.
    10. Ater, Itai, 2012. "Internalization of congestion at US hub airports," Journal of Urban Economics, Elsevier, vol. 72(2), pages 196-209.
    11. Zhang, Anming & Czerny, Achim I., 2012. "Airports and airlines economics and policy: An interpretive review of recent research," Economics of Transportation, Elsevier, vol. 1(1), pages 15-34.
    12. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    13. Brueckner, Jan K., 2009. "Price vs. quantity-based approaches to airport congestion management," Journal of Public Economics, Elsevier, vol. 93(5-6), pages 681-690, June.
    14. Jan K. Brueckner, 2008. "Slot-Based Approaches to Airport Congestion Management," CESifo Working Paper Series 2302, CESifo.
    15. Brueckner, Jan K. & Van Dender, Kurt, 2008. "Atomistic congestion tolls at concentrated airports? Seeking a unified view in the internalization debate," Journal of Urban Economics, Elsevier, vol. 64(2), pages 288-295, September.
    16. Itai Ater, 2007. "Congestion and Market Structure in the Airline Industry," Working Papers 07-28, NET Institute, revised Sep 2007.
    17. Lin, Ming Hsin & Zhang, Yimin, 2017. "Hub-airport congestion pricing and capacity investment," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 89-106.
    18. Yu, Xiaojuan & van den Berg, Vincent A.C. & Verhoef, Erik T. & Li, Zhi-Chun, 2022. "Will all autonomous cars cooperate? Brands’ strategic interactions under dynamic congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    19. Czerny, Achim I. & Cowan, Simon & Zhang, Anming, 2017. "How to mix per-flight and per-passenger based airport charges: The oligopoly case," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 483-500.
    20. Lin, Ming Hsin, 2020. "Congestion pricing and capacity for internationally interlinked airports," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 126-142.

    More about this item

    Keywords

    Congestion externality; fleets; autonomous vehicles; sorting; rationing;
    All these keywords.

    JEL classification:

    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise
    • R11 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Regional Economic Activity: Growth, Development, Environmental Issues, and Changes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bzn:wpaper:bemps67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: F. Marta L. Di Lascio or Alessandro Fedele (email available below). General contact details of provider: https://edirc.repec.org/data/feubzit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.