IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v94y2016icp43-60.html
   My bibliography  Save this article

Autonomous cars and dynamic bottleneck congestion: The effects on capacity, value of time and preference heterogeneity

Author

Listed:
  • van den Berg, Vincent A.C.
  • Verhoef, Erik T.

Abstract

‘Autonomous cars’ are cars that can drive themselves without human control. Autonomous cars can safely drive closer together than cars driven by humans, thereby possibly increasing road capacity. By allowing drivers to perform other activities in the vehicle, they may reduce the value of travel time losses (VOT). We investigate the effects of autonomous cars using a dynamic equilibrium model of congestion that captures three main elements: the resulting increase in capacity, the decrease in the VOT for those who acquire one and the implications of the resulting changes in the heterogeneity of VOTs. We do so for three market organizations: private monopoly, perfect competition and public supply. Even though an increased share of autonomous cars raises average capacity, it may hurt existing autonomous car users as those who switch to an autonomous car will impose increased congestion externalities due to their altered departure time behaviour. Depending on which effect dominates, switching to an autonomous vehicle may impose a net negative or positive externality. Often public supply leads to 100% autonomous cars, but it may be optimal to have a mix of car types, especially when there is a net negative externality. With a positive (negative) externality, perfect competition leads to an undersupply (oversupply) of autonomous cars, and a public supplier needs to subsidise (tax) autonomous cars to maximise welfare. A monopolist supplier ignores the capacity effect and adds a mark-up to its price.

Suggested Citation

  • van den Berg, Vincent A.C. & Verhoef, Erik T., 2016. "Autonomous cars and dynamic bottleneck congestion: The effects on capacity, value of time and preference heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 43-60.
  • Handle: RePEc:eee:transb:v:94:y:2016:i:c:p:43-60
    DOI: 10.1016/j.trb.2016.08.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261515300643
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2016.08.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van den Berg, Vincent A.C., 2014. "Coarse tolling with heterogeneous preferences," Transportation Research Part B: Methodological, Elsevier, vol. 64(C), pages 1-23.
    2. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1993. "A Structural Model of Peak-Period Congestion: A Traffic Bottleneck with Elastic Demand," American Economic Review, American Economic Association, vol. 83(1), pages 161-179, March.
    3. Small, Kenneth A., 2015. "The bottleneck model: An assessment and interpretation," Economics of Transportation, Elsevier, vol. 4(1), pages 110-117.
    4. Robin Lindsey, 2004. "Existence, Uniqueness, and Trip Cost Function Properties of User Equilibrium in the Bottleneck Model with Multiple User Classes," Transportation Science, INFORMS, vol. 38(3), pages 293-314, August.
    5. Kouwenhoven, Marco & de Jong, Gerard C. & Koster, Paul & van den Berg, Vincent A.C. & Verhoef, Erik T. & Bates, John & Warffemius, Pim M.J., 2014. "New values of time and reliability in passenger transport in The Netherlands," Research in Transportation Economics, Elsevier, vol. 47(C), pages 37-49.
    6. Kenneth Button & Erik Verhoef (ed.), 1998. "Road Pricing, Traffic Congestion and the Environment," Books, Edward Elgar Publishing, number 940.
    7. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    8. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1990. "Economics of a bottleneck," Journal of Urban Economics, Elsevier, vol. 27(1), pages 111-130, January.
    9. Raphaël Lamotte & André de Palma & Nikolas Geroliminis, 2016. "Sharing the road: the economics of autonomous vehicles," Working Papers hal-01281425, HAL.
    10. van den Berg, Vincent & Verhoef, Erik T., 2011. "Congestion tolling in the bottleneck model with heterogeneous values of time," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 60-78, January.
    11. Fagnant, Daniel J. & Kockelman, Kara, 2015. "Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 167-181.
    12. Kenneth Small, 2015. "The Bottleneck Model: An Assessment and Interpretation," Working Papers 141506, University of California-Irvine, Department of Economics.
    13. Zhang, Fangni & Lindsey, Robin & Yang, Hai, 2016. "The Downs–Thomson paradox with imperfect mode substitutes and alternative transit administration regimes," Transportation Research Part B: Methodological, Elsevier, vol. 86(C), pages 104-127.
    14. van den Berg, Vincent & Verhoef, Erik T., 2011. "Winning or losing from dynamic bottleneck congestion pricing?: The distributional effects of road pricing with heterogeneity in values of time and schedule delay," Journal of Public Economics, Elsevier, vol. 95(7-8), pages 983-992, August.
    15. van den Berg, Vincent & Verhoef, Erik T., 2011. "Winning or losing from dynamic bottleneck congestion pricing?," Journal of Public Economics, Elsevier, vol. 95(7), pages 983-992.
    16. Small, Kenneth A, 1982. "The Scheduling of Consumer Activities: Work Trips," American Economic Review, American Economic Association, vol. 72(3), pages 467-479, June.
    17. A. Michael Spence, 1975. "Monopoly, Quality, and Regulation," Bell Journal of Economics, The RAND Corporation, vol. 6(2), pages 417-429, Autumn.
    18. Sergejs Gubins & Erik T. Verhoef, 2011. "Teleworking and Congestion: A Dynamic Bottleneck Analysis," Tinbergen Institute Discussion Papers 11-096/3, Tinbergen Institute.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhi-Chun & Huang, Hai-Jun & Yang, Hai, 2020. "Fifty years of the bottleneck model: A bibliometric review and future research directions," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 311-342.
    2. Li, Zhi-Chun & Lam, William H.K. & Wong, S.C., 2017. "Step tolling in an activity-based bottleneck model," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 306-334.
    3. Vincent A.C. van den Berg & Erik T. Verhoef, 2015. "Robot Cars and Dynamic Bottleneck Congestion: The Effects on Capacity, Value of Time and Preference Heterogeneity," Tinbergen Institute Discussion Papers 15-062/VIII, Tinbergen Institute, revised 11 Jul 2016.
    4. Yu, Xiaojuan & van den Berg, Vincent A.C. & Verhoef, Erik T. & Li, Zhi-Chun, 2022. "Will all autonomous cars cooperate? Brands’ strategic interactions under dynamic congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    5. Carlo Cenedese & Patrick Stokkink & Nikolas Gerolimins & John Lygeros, 2021. "Incentive-Based Electric Vehicle Charging for Managing Bottleneck Congestion," Papers 2111.05600, arXiv.org.
    6. Chen, Hongyu & Liu, Yang & Nie, Yu (Marco), 2015. "Solving the step-tolled bottleneck model with general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 210-229.
    7. Ren-Yong Guo & Hai Yang & Hai-Jun Huang, 2018. "Are We Really Solving the Dynamic Traffic Equilibrium Problem with a Departure Time Choice?," Transportation Science, INFORMS, vol. 52(3), pages 603-620, June.
    8. Guo, Ren-Yong & Yang, Hai & Huang, Hai-Jun & Li, Xinwei, 2018. "Day-to-day departure time choice under bounded rationality in the bottleneck model," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 832-849.
    9. Vincent van den Berg, "undated". "Self-financing roads under coarse tolling and heterogeneous preferences," Tinbergen Institute Discussion Papers 22-045/VIII, Tinbergen Institute.
    10. Chen, Hongyu & Nie, Yu (Marco) & Yin, Yafeng, 2015. "Optimal multi-step toll design under general user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 775-793.
    11. Takayama, Yuki, 2020. "Who gains and who loses from congestion pricing in a monocentric city with a bottleneck?," Economics of Transportation, Elsevier, vol. 24(C).
    12. Sun, Jian & Wu, Jiyan & Xiao, Feng & Tian, Ye & Xu, Xiangdong, 2020. "Managing bottleneck congestion with incentives," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 143-166.
    13. Yu, Xiaojuan & van den Berg, Vincent A.C. & Li, Zhi-Chun, 2023. "Congestion pricing and information provision under uncertainty: Responsive versus habitual pricing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    14. Braid, Ralph M., 2018. "Partial peak-load pricing of a transportation bottleneck with homogeneous and heterogeneous values of time," Economics of Transportation, Elsevier, vol. 16(C), pages 29-41.
    15. Zhu, Tingting & Li, Yao & Long, Jiancheng, 2022. "Departure time choice equilibrium and tolling strategies for a bottleneck with continuous scheduling preference," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    16. Amirgholy, Mahyar & Gao, H. Oliver, 2017. "Modeling the dynamics of congestion in large urban networks using the macroscopic fundamental diagram: User equilibrium, system optimum, and pricing strategies," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 215-237.
    17. Wu, Wen-Xiang & Huang, Hai-Jun, 2015. "An ordinary differential equation formulation of the bottleneck model with user heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 34-58.
    18. Kenneth Small, 2015. "The Bottleneck Model: An Assessment and Interpretation," Working Papers 141506, University of California-Irvine, Department of Economics.
    19. van den Berg, Vincent A.C., 2014. "Coarse tolling with heterogeneous preferences," Transportation Research Part B: Methodological, Elsevier, vol. 64(C), pages 1-23.
    20. Takayama, Yuki, 2018. "Time-varying congestion tolling and urban spatial structure," MPRA Paper 89896, University Library of Munich, Germany.

    More about this item

    Keywords

    Autonomous cars; Heterogeneity; Bottleneck model; Self-driving cars; Road capacity;
    All these keywords.

    JEL classification:

    • D42 - Microeconomics - - Market Structure, Pricing, and Design - - - Monopoly
    • D62 - Microeconomics - - Welfare Economics - - - Externalities
    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies
    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise
    • R48 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Government Pricing and Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:94:y:2016:i:c:p:43-60. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.