IDEAS home Printed from https://ideas.repec.org/p/boj/bojwps/06-e-11.html
   My bibliography  Save this paper

Roles of Technology and Nontechnology Shocks in the Business Cycles

Author

Listed:
  • Shingo Watanabe

    (Bank of Japan)

Abstract

The empirical study of technology shocks is intensively conducted to evaluate plausibility of the technology-driven real business cycle hypothesis. A popular method is to identify technology shocks by the long-run restriction that those solely have permanent effects on labor productivity in the system consisting of labor productivity growth and hours worked. While it has an advantage of not using Solow residuals which tend to accompany measurement errors, it potentially misidentifies nontechnology shocks, which permanently affect capital-labor ratio such as a capital tax shock, as technology shocks. We show that such shock brings nonstationarity of nominal investment-output ratio and identify it through the additional restriction that it permanently affects real investment-output ratio. Data indicate that the shock works importantly in not U.S. but Japan. In the system for Japan with the shock added, hours worked responses to technology shocks become insignificant. Furthermore the technology shock loses the dominant role in Japan's lost decade. We also study an appropriate treatment of lower-frequency movements in Japan's hours worked due to inter-sectoral labor movements and working hours reductions.

Suggested Citation

  • Shingo Watanabe, 2006. "Roles of Technology and Nontechnology Shocks in the Business Cycles," Bank of Japan Working Paper Series 06-E-11, Bank of Japan.
  • Handle: RePEc:boj:bojwps:06-e-11
    as

    Download full text from publisher

    File URL: http://www.boj.or.jp/en/research/wps_rev/wps_2006/data/wp06e11.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Prescott, Edward C., 1986. "Theory ahead of business-cycle measurement," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 25(1), pages 11-44, January.
    2. Fumio Hayashi & Edward C. Prescott, 2004. "The 1990s in Japan: a lost decade," Chapters, in: Paolo Onofri (ed.), The Economics of an Ageing Population, chapter 2, Edward Elgar Publishing.
    3. Miles S. Kimball & John G. Fernald & Susanto Basu, 2006. "Are Technology Improvements Contractionary?," American Economic Review, American Economic Association, vol. 96(5), pages 1418-1448, December.
    4. Jordi Galí & Pau Rabanal, 2005. "Technology Shocks and Aggregate Fluctuations: How Well Does the Real Business Cycle Model Fit Postwar US Data?," NBER Chapters, in: NBER Macroeconomics Annual 2004, Volume 19, pages 225-318, National Bureau of Economic Research, Inc.
    5. Christopher J. Erceg & Luca Guerrieri & Christopher Gust, 2005. "Can Long-Run Restrictions Identify Technology Shocks?," Journal of the European Economic Association, MIT Press, vol. 3(6), pages 1237-1278, December.
    6. Fumio Hayashi & Edward C. Prescott, 2002. "The 1990s in Japan: A Lost Decade," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 5(1), pages 206-235, January.
    7. Mendoza, Enrique G. & Razin, Assaf & Tesar, Linda L., 1994. "Effective tax rates in macroeconomics: Cross-country estimates of tax rates on factor incomes and consumption," Journal of Monetary Economics, Elsevier, vol. 34(3), pages 297-323, December.
    8. Faust, Jon & Leeper, Eric M, 1997. "When Do Long-Run Identifying Restrictions Give Reliable Results?," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(3), pages 345-353, July.
    9. Francis, Neville & Ramey, Valerie A., 2005. "Is the technology-driven real business cycle hypothesis dead? Shocks and aggregate fluctuations revisited," Journal of Monetary Economics, Elsevier, vol. 52(8), pages 1379-1399, November.
    10. Neville Francis & Valerie A. Ramey, 2006. "The Source of Historical Economic Fluctuations: An Analysis Using Long-Run Restrictions," NBER Chapters, in: NBER International Seminar on Macroeconomics 2004, pages 17-73, National Bureau of Economic Research, Inc.
    11. Lawrence J. Christiano & Martin Eichenbaum & Robert Vigfusson, 2003. "What Happens After a Technology Shock?," NBER Working Papers 9819, National Bureau of Economic Research, Inc.
    12. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ippei Fujiwara & Yasuo Hirose & Mototsugu Shintani, 2011. "Can News Be a Major Source of Aggregate Fluctuations? A Bayesian DSGE Approach," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 43(1), pages 1-29, February.
    2. Ko, Jun-Hyung, 2011. "Has the Government Lowered the Hours Worked? Evidence from Japan," MPRA Paper 30058, University Library of Munich, Germany.
    3. Ko, Jun-Hyung & Murase, Koichi, 2013. "Great Moderation in the Japanese economy," Japan and the World Economy, Elsevier, vol. 27(C), pages 10-24.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John G. Fernald, 2005. "Trend breaks, long-run restrictions, and the contractionary effects of technology improvements," Working Paper Series 2005-21, Federal Reserve Bank of San Francisco.
    2. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    3. Fernald, John G., 2007. "Trend breaks, long-run restrictions, and contractionary technology improvements," Journal of Monetary Economics, Elsevier, vol. 54(8), pages 2467-2485, November.
    4. Shingo Watanabe, 2012. "The Role Of Technology And Nontechnology Shocks In Business Cycles," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(4), pages 1287-1321, November.
    5. Jordi Gali, 2005. "Trends in hours, balanced growth, and the role of technology in the business cycle," Review, Federal Reserve Bank of St. Louis, vol. 87(Jul), pages 459-486.
    6. Patrick Fève & Alain Guay, 2010. "Identification of Technology Shocks in Structural Vars," Economic Journal, Royal Economic Society, vol. 120(549), pages 1284-1318, December.
    7. Miles S. Kimball & John G. Fernald & Susanto Basu, 2006. "Are Technology Improvements Contractionary?," American Economic Review, American Economic Association, vol. 96(5), pages 1418-1448, December.
    8. Thomet, Jacqueline & Wegmueller, Philipp, 2021. "Technology Shocks And Hours Worked: A Cross-Country Analysis," Macroeconomic Dynamics, Cambridge University Press, vol. 25(4), pages 1020-1052, June.
    9. Edge, Rochelle M. & Laubach, Thomas & Williams, John C., 2007. "Learning and shifts in long-run productivity growth," Journal of Monetary Economics, Elsevier, vol. 54(8), pages 2421-2438, November.
    10. Rujin, Svetlana, 2019. "What are the effects of technology shocks on international labor markets?," Ruhr Economic Papers 806, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    11. Martial Dupaigne & Patrick Feve & Julien Matheron, 2007. "Technology Shocks, Non-stationary Hours and DSVAR," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 10(2), pages 238-255, April.
    12. Chari, V.V. & Kehoe, Patrick J. & McGrattan, Ellen R., 2008. "Are structural VARs with long-run restrictions useful in developing business cycle theory?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1337-1352, November.
    13. Peter N. Ireland, 2009. "On the Welfare Cost of Inflation and the Recent Behavior of Money Demand," American Economic Review, American Economic Association, vol. 99(3), pages 1040-1052, June.
    14. Marcos Sanso-Navarro, 2012. "Broken trend stationarity of hours worked," Applied Economics, Taylor & Francis Journals, vol. 44(30), pages 3955-3964, October.
    15. Charles, Amélie & Darné, Olivier & Tripier, Fabien, 2015. "Are Unit Root Tests Useful In The Debate Over The (Non)Stationarity Of Hours Worked?," Macroeconomic Dynamics, Cambridge University Press, vol. 19(1), pages 167-188, January.
    16. Cantore, Cristiano & Ferroni, Filippo & León-Ledesma, Miguel A., 2017. "The dynamics of hours worked and technology," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 67-82.
    17. Ríos-Rull, José-Víctor & Santaeulàlia-Llopis, Raül, 2010. "Redistributive shocks and productivity shocks," Journal of Monetary Economics, Elsevier, vol. 57(8), pages 931-948, November.
    18. Jordi Gali & Pau Rabanal, 2004. "Technology Shocks and Aggregate Fluctuations: How Well Does the RBS Model Fit Postwar U.S. Data?," NBER Working Papers 10636, National Bureau of Economic Research, Inc.
    19. Fabio Canova & David Lopez-Salido & Claudio Michelacci, 2010. "The effects of technology shocks on hours and output: a robustness analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(5), pages 755-773.
    20. Peter Ireland & Scott Schuh, 2008. "Productivity and U.S. Macroeconomic Performance: Interpreting the Past and Predicting the Future with a Two-Sector Real Business Cycle Model," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 11(3), pages 473-492, July.

    More about this item

    Keywords

    Business cycle; Technology shock;

    JEL classification:

    • E10 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - General
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boj:bojwps:06-e-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bank of Japan (email available below). General contact details of provider: https://edirc.repec.org/data/bojgvjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.