IDEAS home Printed from https://ideas.repec.org/p/bie/wpaper/586.html
   My bibliography  Save this paper

On a Strategic Model of Pollution Control

Author

Listed:
  • Ferrari, Giorgio

    (Center for Mathematical Economics, Bielefeld University)

  • Koch, Torben

    (Center for Mathematical Economics, Bielefeld University)

Abstract

This paper proposes a strategic model of pollution control. A firm, representative of the productive sector of a country, aims at maximizing its profits by expanding its production. Assuming that the output of production is proportional to the level of pollutants' emissions, the firm increases the level of pollution. The government of the country aims at minimizing the social costs due to the pollution, and introduces regulatory constraints on the emissions' level, which then effectively cap the output of production. Supposing that the firm and the government face both proportional and fixed costs in order to adopt their policies, we model the previous problem as a stochastic impulse two-person nonzero-sum game. The state variable of the game is the level of the output of production which evolves as a general linearly controlled one-dimensional Itô-diffusion. Following an educated guess, we first construct a pair of candidate equilibrium policies and of corresponding equilibrium values, and we then provide a set of sufficient conditions under which they indeed realize an equilibrium. Our results are complemented by a numerical study when the (uncontrolled) output of production evolves as a geometric Brownian motion, and the firm's operating prot and the government's running cost functions are of power type. An analysis of the dependency of the equilibrium policies and values on the model parameters yields interesting new behaviors that we explain as a consequence of the strategic interaction between the firm and the government.

Suggested Citation

  • Ferrari, Giorgio & Koch, Torben, 2018. "On a Strategic Model of Pollution Control," Center for Mathematical Economics Working Papers 586, Center for Mathematical Economics, Bielefeld University.
  • Handle: RePEc:bie:wpaper:586
    as

    Download full text from publisher

    File URL: https://pub.uni-bielefeld.de/download/2930413/2930415
    File Function: First Version, 2017
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abel Cadenillas & Tahir Choulli & Michael Taksar & Lei Zhang, 2006. "Classical And Impulse Stochastic Control For The Optimization Of The Dividend And Risk Policies Of An Insurance Firm," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 181-202, January.
    2. René Aïd & Matteo Basei & Giorgia Callegaro & Luciano Campi & Tiziano Vargiolu, 2020. "Nonzero-Sum Stochastic Differential Games with Impulse Controls: A Verification Theorem with Applications," Mathematics of Operations Research, INFORMS, vol. 45(1), pages 205-232, February.
    3. Asea, Patrick K. & Turnovsky, Stephen J., 1998. "Capital income taxation and risk-taking in a small open economy," Journal of Public Economics, Elsevier, vol. 68(1), pages 55-90, April.
    4. Pindyck, Robert S., 2000. "Irreversibilities and the timing of environmental policy," Resource and Energy Economics, Elsevier, vol. 22(3), pages 233-259, July.
    5. Pindyck, Robert S., 2002. "Optimal timing problems in environmental economics," Journal of Economic Dynamics and Control, Elsevier, vol. 26(9-10), pages 1677-1697, August.
    6. Malte Schwoon & Richard S.J. Tol, 2006. "Optimal CO2-abatement with Socio-economic Inertia and Induced Technological Change," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 25-60.
    7. Alain Bensoussan & Lama Moussawi-Haidar & Metin Çakanyıldırım, 2010. "Inventory control with an order-time constraint: optimality, uniqueness and significance," Annals of Operations Research, Springer, vol. 181(1), pages 603-640, December.
    8. Anne Epaulard & Aude Pommeret, 2003. "Recursive Utility, Endogenous Growth, and the Welfare Cost of Volatility," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 6(3), pages 672-684, July.
    9. Robert McDonald & Daniel Siegel, 1986. "The Value of Waiting to Invest," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 101(4), pages 707-727.
    10. Dayanik, Savas & Karatzas, Ioannis, 2003. "On the optimal stopping problem for one-dimensional diffusions," Stochastic Processes and their Applications, Elsevier, vol. 107(2), pages 173-212, October.
    11. Cadenillas, Abel & Zapatero, Fernando, 1999. "Optimal Central Bank Intervention in the Foreign Exchange Market," Journal of Economic Theory, Elsevier, vol. 87(1), pages 218-242, July.
    12. Ralf Korn, 1999. "Some applications of impulse control in mathematical finance," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 50(3), pages 493-518, December.
    13. Jonathan Eaton, 1981. "Fiscal Policy, Inflation and the Accumulation of Risky Capital," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 48(3), pages 435-445.
    14. Aude Pommeret & Fabien Prieur, 2013. "Double Irreversibility and Environmental Policy Timing," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 15(2), pages 273-291, April.
    15. de Angelis, Tiziano & Ferrari, Giorgio, 2016. "Stochastic nonzero-sum games: a new connection between singular control and optimal stopping," Center for Mathematical Economics Working Papers 565, Center for Mathematical Economics, Bielefeld University.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giorgio Ferrari & Torben Koch, 2019. "On a strategic model of pollution control," Annals of Operations Research, Springer, vol. 275(2), pages 297-319, April.
    2. Matteo Basei, 2019. "Optimal price management in retail energy markets: an impulse control problem with asymptotic estimates," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(3), pages 355-383, June.
    3. Diego Zabaljauregui, 2019. "A fixed-point policy-iteration-type algorithm for symmetric nonzero-sum stochastic impulse control games," Papers 1909.03574, arXiv.org, revised Jun 2020.
    4. Matteo Basei, 2018. "Optimal price management in retail energy markets: an impulse control problem with asymptotic estimates," Papers 1803.08166, arXiv.org, revised Mar 2019.
    5. Diego Zabaljauregui, 2020. "Optimal market making under partial information and numerical methods for impulse control games with applications," Papers 2009.06521, arXiv.org.
    6. LOFGREN Asa & MILLOCK Katrin & NAUGES Céline, 2007. "Using Ex Post Data to Estimate the Hurdle Rate of Abatement Investments - An application to the Swedish Pulp and Paper Industry and Energy Sector," LERNA Working Papers 07.06.227, LERNA, University of Toulouse.
    7. Åsa Löfgren & Katrin Millock & Céline Nauges, 2008. "Using ex post data to estimate the hurdle rate of abatement investments - an application to sulfur emissions from the Swedish pulp and paper industry and energy sector," Documents de travail du Centre d'Economie de la Sorbonne v08017, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    8. Wälde, Klaus, 2011. "Production technologies in stochastic continuous time models," Journal of Economic Dynamics and Control, Elsevier, vol. 35(4), pages 616-622, April.
    9. Pommeret, Aude & Smith, William T., 2005. "Fertility, volatility, and growth," Economics Letters, Elsevier, vol. 87(3), pages 347-353, June.
    10. Löfgren, Åsa & Millock, Katrin & Nauges, Céline, 2008. "The effect of uncertainty on pollution abatement investments: Measuring hurdle rates for Swedish industry," Resource and Energy Economics, Elsevier, vol. 30(4), pages 475-491, December.
    11. Giorgio Ferrari & Tiziano Vargiolu, 2020. "On the singular control of exchange rates," Annals of Operations Research, Springer, vol. 292(2), pages 795-832, September.
    12. Mosiño, Alejandro, 2012. "Producing energy in a stochastic environment: Switching from non-renewable to renewable resources," Resource and Energy Economics, Elsevier, vol. 34(4), pages 413-430.
    13. Kenc, Turalay, 2004. "Taxation, risk-taking and growth: a continuous-time stochastic general equilibrium analysis with labor-leisure choice," Journal of Economic Dynamics and Control, Elsevier, vol. 28(8), pages 1511-1539, June.
    14. Chi Seng Pun, 2022. "Robust classical-impulse stochastic control problems in an infinite horizon," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(2), pages 291-312, October.
    15. Turnovsky, Stephen J. & Chattopadhyay, Pradip, 2003. "Volatility and growth in developing economies: some numerical results and empirical evidence," Journal of International Economics, Elsevier, vol. 59(2), pages 267-295, March.
    16. Agliardi, Elettra & Sereno, Luigi, 2012. "Environmental protection, public finance requirements and the timing of emission reductions," Environment and Development Economics, Cambridge University Press, vol. 17(6), pages 715-739, December.
    17. Pindyck, Robert S., 2012. "Uncertain outcomes and climate change policy," Journal of Environmental Economics and Management, Elsevier, vol. 63(3), pages 289-303.
    18. Liangchen Li & Michael Ludkovski, 2018. "Stochastic Switching Games," Papers 1807.03893, arXiv.org.
    19. Baccarin, Stefano, 2009. "Optimal impulse control for a multidimensional cash management system with generalized cost functions," European Journal of Operational Research, Elsevier, vol. 196(1), pages 198-206, July.
    20. Esteve, Vicente & Tamarit, Cecilio, 2012. "Threshold cointegration and nonlinear adjustment between CO2 and income: The Environmental Kuznets Curve in Spain, 1857–2007," Energy Economics, Elsevier, vol. 34(6), pages 2148-2156.

    More about this item

    Keywords

    pollution; stochastic impulse nonzero-sum game; verication theorem; diffusions;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bie:wpaper:586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bettina Weingarten (email available below). General contact details of provider: https://edirc.repec.org/data/imbiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.