IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1807.03893.html
   My bibliography  Save this paper

Stochastic Switching Games

Author

Listed:
  • Liangchen Li
  • Michael Ludkovski

Abstract

We study nonzero-sum stochastic switching games. Two players compete for market dominance through controlling (via timing options) the discrete-state market regime $M$. Switching decisions are driven by a continuous stochastic factor $X$ that modulates instantaneous revenue rates and switching costs. This generates a competitive feedback between the short-term fluctuations due to $X$ and the medium-term advantages based on $M$. We construct threshold-type Feedback Nash Equilibria which characterize stationary strategies describing long-run dynamic equilibrium market organization. Two sequential approximation schemes link the switching equilibrium to (i) constrained optimal switching, (ii) multi-stage timing games. We provide illustrations using an Ornstein-Uhlenbeck $X$ that leads to a recurrent equilibrium $M^\ast$ and a Geometric Brownian Motion $X$ that makes $M^\ast$ eventually "absorbed" as one player eventually gains permanent advantage. Explicit computations and comparative statics regarding the emergent macroscopic market equilibrium are also provided.

Suggested Citation

  • Liangchen Li & Michael Ludkovski, 2018. "Stochastic Switching Games," Papers 1807.03893, arXiv.org.
  • Handle: RePEc:arx:papers:1807.03893
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1807.03893
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huisman, Kuno J. M. & Kort, Peter M., 2004. "Strategic technology adoption taking into account future technological improvements: A real options approach," European Journal of Operational Research, Elsevier, vol. 159(3), pages 705-728, December.
    2. Boyer, Marcel & Lasserre, Pierre & Moreaux, Michel, 2012. "A dynamic duopoly investment game without commitment under uncertain market expansion," International Journal of Industrial Organization, Elsevier, vol. 30(6), pages 663-681.
    3. René Aïd & Matteo Basei & Giorgia Callegaro & Luciano Campi & Tiziano Vargiolu, 2020. "Nonzero-Sum Stochastic Differential Games with Impulse Controls: A Verification Theorem with Applications," Mathematics of Operations Research, INFORMS, vol. 45(1), pages 205-232, February.
    4. Rene Carmona & Michael Ludkovski, 2008. "Pricing Asset Scheduling Flexibility using Optimal Switching," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(5-6), pages 405-447.
    5. Riedel, Frank & Steg, Jan-Henrik, 2017. "Subgame-perfect equilibria in stochastic timing games," Journal of Mathematical Economics, Elsevier, vol. 72(C), pages 36-50.
    6. René Carmona & Nizar Touzi, 2008. "Optimal Multiple Stopping And Valuation Of Swing Options," Mathematical Finance, Wiley Blackwell, vol. 18(2), pages 239-268, April.
    7. M. R. Grasselli & V. Leclère & M. Ludkovski, 2013. "Priority Option: The Value Of Being A Leader," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(01), pages 1-37.
    8. Said Hamadène & Monique Jeanblanc, 2007. "On the Starting and Stopping Problem: Application in Reversible Investments," Mathematics of Operations Research, INFORMS, vol. 32(1), pages 182-192, February.
    9. Tim Leung & Xin Li, 2015. "Optimal Mean Reversion Trading With Transaction Costs And Stop-Loss Exit," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(03), pages 1-31.
    10. René Aïd & Liangchen Li & Michael Ludkovski, 2017. "Capacity Expansion Games with Application to Competition in Power Generation Investments," Post-Print hal-02313872, HAL.
    11. Aïd, René & Li, Liangchen & Ludkovski, Michael, 2017. "Capacity expansion games with application to competition in power generation investments," Journal of Economic Dynamics and Control, Elsevier, vol. 84(C), pages 1-31.
    12. Dayanik, Savas & Karatzas, Ioannis, 2003. "On the optimal stopping problem for one-dimensional diffusions," Stochastic Processes and their Applications, Elsevier, vol. 107(2), pages 173-212, October.
    13. Erhan Bayraktar & Masahiko Egami, 2010. "On the One-Dimensional Optimal Switching Problem," Mathematics of Operations Research, INFORMS, vol. 35(1), pages 140-159, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aïd, René & Li, Liangchen & Ludkovski, Michael, 2017. "Capacity expansion games with application to competition in power generation investments," Journal of Economic Dynamics and Control, Elsevier, vol. 84(C), pages 1-31.
    2. de Angelis, Tiziano & Ferrari, Giorgio & Moriarty, John, 2016. "Nash equilibria of threshold type for two-player nonzero-sum games of stopping," Center for Mathematical Economics Working Papers 563, Center for Mathematical Economics, Bielefeld University.
    3. Christensen, Sören, 2014. "On the solution of general impulse control problems using superharmonic functions," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 709-729.
    4. Mihail Zervos & Carlos Oliveira & Kate Duckworth, 2018. "An investment model with switching costs and the option to abandon," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 88(3), pages 417-443, December.
    5. René Carmona & Savas Dayanik, 2008. "Optimal Multiple Stopping of Linear Diffusions," Mathematics of Operations Research, INFORMS, vol. 33(2), pages 446-460, May.
    6. Marie Bernhart & Huy^en Pham & Peter Tankov & Xavier Warin, 2011. "Swing Options Valuation: a BSDE with Constrained Jumps Approach," Papers 1101.0975, arXiv.org.
    7. Ren'e Aid & Luciano Campi & Liangchen Li & Mike Ludkovski, 2020. "An Impulse-Regime Switching Game Model of Vertical Competition," Papers 2006.04382, arXiv.org.
    8. René Aïd & Luciano Campi & Liangchen Li & Mike Ludkovski, 2021. "An Impulse-Regime Switching Game Model of Vertical Competition," Dynamic Games and Applications, Springer, vol. 11(4), pages 631-669, December.
    9. Erhan Bayraktar & Masahiko Egami, 2010. "On the One-Dimensional Optimal Switching Problem," Mathematics of Operations Research, INFORMS, vol. 35(1), pages 140-159, February.
    10. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078.
    11. Billette de Villemeur, Etienne & Ruble, Richard & Versaevel, Bruno, 2014. "Innovation and imitation incentives in dynamic duopoly," MPRA Paper 59453, University Library of Munich, Germany.
    12. Katia Colaneri & Tiziano De Angelis, 2019. "A class of recursive optimal stopping problems with applications to stock trading," Papers 1905.02650, arXiv.org, revised Jun 2021.
    13. Gassiat, Paul & Kharroubi, Idris & Pham, Huyên, 2012. "Time discretization and quantization methods for optimal multiple switching problem," Stochastic Processes and their Applications, Elsevier, vol. 122(5), pages 2019-2052.
    14. Alex S. L. Tse & Harry Zheng, 2023. "Speculative trading, prospect theory and transaction costs," Finance and Stochastics, Springer, vol. 27(1), pages 49-96, January.
    15. Pablo Azcue & Esther Frostig & Nora Muler, 2023. "Optimal Strategies in a Production Inventory Control Model," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-43, March.
    16. Ferrari, Giorgio & Koch, Torben, 2018. "On a Strategic Model of Pollution Control," Center for Mathematical Economics Working Papers 586, Center for Mathematical Economics, Bielefeld University.
    17. Lavrutich, Maria N. & Huisman, Kuno J.M. & Kort, Peter M., 2016. "Entry deterrence and hidden competition," Journal of Economic Dynamics and Control, Elsevier, vol. 69(C), pages 409-435.
    18. Azevedo, Alcino & Paxson, Dean, 2014. "Developing real option game models," European Journal of Operational Research, Elsevier, vol. 237(3), pages 909-920.
    19. Tim Leung & Xin Li & Zheng Wang, 2015. "Optimal Multiple Trading Times Under the Exponential OU Model with Transaction Costs," Papers 1504.04682, arXiv.org.
    20. Tim Leung & Hongzhong Zhang, 2017. "Optimal Trading with a Trailing Stop," Papers 1701.03960, arXiv.org, revised Mar 2019.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1807.03893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.