IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2402.02745.html
   My bibliography  Save this paper

Optimal dynamic climate adaptation pathways: a case study of New York City

Author

Listed:
  • Chi Truong

    (Department of Actuarial Studies and Business Analytics, Macquarie Business School, Macquarie University)

  • Matteo Malavasi

    (School of Risk and Actuarial Studies, UNSW Business School, UNSW)

  • Han Li

    (Department of Economics, University of Melbourne)

  • Stefan Trueck

    (Department of Actuarial Studies and Business Analytics, Macquarie Business School, Macquarie University)

  • Pavel V. Shevchenko

    (Department of Actuarial Studies and Business Analytics, Macquarie Business School, Macquarie University)

Abstract

Assessing climate risk and its potential impacts on our cities and economies is of fundamental importance. Extreme weather events, such as hurricanes, floods, and storm surges can lead to catastrophic damages. We propose a flexible approach based on real options analysis and extreme value theory, which enables the selection of optimal adaptation pathways for a portfolio of climate adaptation projects. We model the severity of extreme sea level events using the block maxima approach from extreme value theory, and then develop a real options framework, factoring in climate change, sea level rise uncertainty, and the growth in asset exposure. We then apply the proposed framework to a real-world problem, considering sea level data as well as different adaptation investment options for New York City. Our research can assist governments and policy makers in taking informed decisions about optimal adaptation pathways and more specifically about reducing flood and storm surge risk in a dynamic settings.

Suggested Citation

  • Chi Truong & Matteo Malavasi & Han Li & Stefan Trueck & Pavel V. Shevchenko, 2024. "Optimal dynamic climate adaptation pathways: a case study of New York City," Papers 2402.02745, arXiv.org.
  • Handle: RePEc:arx:papers:2402.02745
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2402.02745
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marc Chesney & Pierre Lasserre & Bruno Troja, 2017. "Mitigating global warming: a real options approach," Annals of Operations Research, Springer, vol. 255(1), pages 465-506, August.
    2. Thomas E. Downing, 2012. "Views of the frontiers in climate change adaptation economics," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 3(2), pages 161-170, March.
    3. John Lintner, 1964. "Optimal Dividends and Corporate Growth under Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 78(1), pages 49-95.
    4. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    5. J. Muñoz & J. Contreras & J. Caamaño & P. Correia, 2011. "A decision-making tool for project investments based on real options: the case of wind power generation," Annals of Operations Research, Springer, vol. 186(1), pages 465-490, June.
    6. Carmen Schiel & Simon Glöser-Chahoud & Frank Schultmann, 2019. "A real option application for emission control measures," Journal of Business Economics, Springer, vol. 89(3), pages 291-325, April.
    7. Taeil Park & Changyoon Kim & Hyoungkwan Kim, 2014. "Valuation of Drainage Infrastructure Improvement Under Climate Change Using Real Options," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 445-457, January.
    8. Stéphane Hallegatte & Nicola Ranger & Olivier Mestre & Patrice Dumas & Jan Corfee-Morlot & Celine Herweijer & Robert Wood, 2011. "Assessing climate change impacts, sea level rise and storm surge risk in port cities: a case study on Copenhagen," Climatic Change, Springer, vol. 104(1), pages 113-137, January.
    9. Malin Song & Qianqian Du, 2019. "Analysis and exploration of damage-reduction measures for flood disasters in China," Annals of Operations Research, Springer, vol. 283(1), pages 795-810, December.
    10. Chi-Hsiang Wang & Yong Khoo & Xiaoming Wang, 2015. "Adaptation benefits and costs of raising coastal buildings under storm-tide inundation in South East Queensland, Australia," Climatic Change, Springer, vol. 132(4), pages 545-558, October.
    11. Michelle Woodward & Zoran Kapelan & Ben Gouldby, 2014. "Adaptive Flood Risk Management Under Climate Change Uncertainty Using Real Options and Optimization," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 75-92, January.
    12. Truong, Chi & Trück, Stefan, 2016. "It’s not now or never: Implications of investment timing and risk aversion on climate adaptation to extreme events," European Journal of Operational Research, Elsevier, vol. 253(3), pages 856-868.
    13. Luiz Brandão & James Dyer, 2005. "Decision Analysis and Real Options: A Discrete Time Approach to Real Option Valuation," Annals of Operations Research, Springer, vol. 135(1), pages 21-39, March.
    14. Jessica Weinkle & Chris Landsea & Douglas Collins & Rade Musulin & Ryan P. Crompton & Philip J. Klotzbach & Roger Pielke, 2018. "Normalized hurricane damage in the continental United States 1900–2017," Nature Sustainability, Nature, vol. 1(12), pages 808-813, December.
    15. Tina Gerl & Heidi Kreibich & Guillermo Franco & David Marechal & Kai Schröter, 2016. "A Review of Flood Loss Models as Basis for Harmonization and Benchmarking," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-22, July.
    16. Newell, Richard G. & Pizer, William A., 2003. "Discounting the distant future: how much do uncertain rates increase valuations?," Journal of Environmental Economics and Management, Elsevier, vol. 46(1), pages 52-71, July.
    17. Berry Gersonius & Richard Ashley & Assela Pathirana & Chris Zevenbergen, 2013. "Climate change uncertainty: building flexibility into water and flood risk infrastructure," Climatic Change, Springer, vol. 116(2), pages 411-423, January.
    18. Boomsma, Trine Krogh & Meade, Nigel & Fleten, Stein-Erik, 2012. "Renewable energy investments under different support schemes: A real options approach," European Journal of Operational Research, Elsevier, vol. 220(1), pages 225-237.
    19. Alejandro Mac Cawley & Maximiliano Cubillos & Rodrigo Pascual, 2020. "A real options approach for joint overhaul and replacement strategies with mean reverting prices," Annals of Operations Research, Springer, vol. 286(1), pages 303-324, March.
    20. Anita Wreford & Ruth Dittrich & Thomas D. van der Pol, 2020. "The added value of real options analysis for climate change adaptation," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(3), May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander, Carol & Chen, Xi & Ward, Charles, 2021. "Risk-adjusted valuation for real option decisions," Journal of Economic Behavior & Organization, Elsevier, vol. 191(C), pages 1046-1064.
    2. Carol Alexander & Xi Chen, 2021. "Model risk in real option valuation," Annals of Operations Research, Springer, vol. 299(1), pages 1025-1056, April.
    3. Andreas Welling, 2017. "Green Finance: Recent developments, characteristics and important actors," FEMM Working Papers 170002, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    4. Myung-Jin Kim & Robert J. Nicholls & John M. Preston & Gustavo A. Almeida, 2022. "Evaluation of flexibility in adaptation projects for climate change," Climatic Change, Springer, vol. 171(1), pages 1-17, March.
    5. Kozlova, Mariia, 2017. "Real option valuation in renewable energy literature: Research focus, trends and design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 180-196.
    6. Truong, Chi & Trück, Stefan & Mathew, Supriya, 2018. "Managing risks from climate impacted hazards – The value of investment flexibility under uncertainty," European Journal of Operational Research, Elsevier, vol. 269(1), pages 132-145.
    7. Spiegel, Alisa & Britz, Wolfgang & Djanibekov, Utkur & Finger, Robert, 2017. "Policy analysis of perennial energy crops cultivation at the farm level: the case of short rotation coppice (SRC) in Germany," Discussion Papers 263448, University of Bonn, Institute for Food and Resource Economics.
    8. Juri Hinz & Tanya Tarnopolskaya & Jeremy Yee, 2020. "Efficient algorithms of pathwise dynamic programming for decision optimization in mining operations," Annals of Operations Research, Springer, vol. 286(1), pages 583-615, March.
    9. Thomas David Pol & Jochen Hinkel, 2019. "Uncertainty representations of mean sea-level change: a telephone game?," Climatic Change, Springer, vol. 152(3), pages 393-411, March.
    10. Cheng, Cheng & Dong, Kangyin & Wang, Zhen & Liu, Shulin & Jurasz, Jakub & Zhang, Haoran, 2023. "Rethinking the evaluation of solar photovoltaic projects under YieldCo mode: A real option perspective," Applied Energy, Elsevier, vol. 336(C).
    11. Trigeorgis, Lenos & Tsekrekos, Andrianos E., 2018. "Real Options in Operations Research: A Review," European Journal of Operational Research, Elsevier, vol. 270(1), pages 1-24.
    12. Haixing Liu & Yuntao Wang & Chi Zhang & Albert S. Chen & Guangtao Fu, 2018. "Assessing real options in urban surface water flood risk management under climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 1-18, October.
    13. Kim, Amy M. & Li, Huanan, 2020. "Incorporating the impacts of climate change in transportation infrastructure decision models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 271-287.
    14. de Bragança, Gabriel Godofredo Fiuza & Daglish, Toby, 2017. "Investing in vertical integration: electricity retail market participation," Energy Economics, Elsevier, vol. 67(C), pages 355-365.
    15. Alain Bensoussan & Benoit Chevalier-Roignant & Alejandro Rivera, 2022. "A model for wind farm management with option interactions," Post-Print hal-04325553, HAL.
    16. Yuqun Dong & Yaming Zhuang, 2023. "Research on an Investment Decision Model of Waste Incineration Power under Demand Guarantee Policies," Sustainability, MDPI, vol. 15(15), pages 1-19, July.
    17. Linnerud, Kristin & Andersson, Ane Marte & Fleten, Stein-Erik, 2014. "Investment timing under uncertain renewable energy policy: An empirical study of small hydropower projects," Energy, Elsevier, vol. 78(C), pages 154-164.
    18. Sun, Bo & Fan, Boyang & Zhang, Yifan & Xie, Jingdong, 2023. "Investment decisions and strategies of China's energy storage technology under policy uncertainty: A real options approach," Energy, Elsevier, vol. 278(PA).
    19. Kroniger, Daniel & Madlener, Reinhard, 2014. "Hydrogen storage for wind parks: A real options evaluation for an optimal investment in more flexibility," Applied Energy, Elsevier, vol. 136(C), pages 931-946.
    20. Bernard Lapeyre & Emile Quinet, 2017. "A Simple GDP-based Model for Public Investments at Risk," Post-Print hal-01666574, HAL.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2402.02745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.