IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v171y2022i1d10.1007_s10584-022-03331-0.html
   My bibliography  Save this article

Evaluation of flexibility in adaptation projects for climate change

Author

Listed:
  • Myung-Jin Kim

    (Ministry of Oceans and Fisheries)

  • Robert J. Nicholls

    (University of East Anglia)

  • John M. Preston

    (University of Southampton)

  • Gustavo A. Almeida

    (University of Southampton)

Abstract

Climate change adaptation inherently entails investment decision-making under the high levels of uncertainty. To address this issue, a single fixed large investment can be divided into two or more sequential investments. This reduces the initial investment cost and adds flexibility about the size and timing of subsequent investment decisions. This flexibility enables future investment decisions to be made when further information about the magnitude of climate change becomes available. This paper presents a real option analysis framework to evaluate adaptations including flexibility to reduce both the risk and uncertainty of climate change, against increasing coastal flooding due to sea-level rise as an example. The paper considers (i) how to design the sequence of adaptation options under growing risk of sea-level rise, and (ii) how to make the efficient use of flexibility included in adaptations for addressing uncertainty. A set of flexibilities (i.e. wait or future growth) are incorporated into single-stage investments (i.e. raising coastal defence from 2.5 mAOD to 3.5mAOD or 4.0 mAOD) in stages so that multiple-stage adaptations with different heights are created. The proposed method compares these sequentially growing adaptations in economic terms, including optimisation, providing additional information on the efficiency of flexible adaptation strategies given the uncertainty of climate change. The results from the evaluation enable decision-makers to identify long-lasting robust adaptation against the uncertainty of climate change.

Suggested Citation

  • Myung-Jin Kim & Robert J. Nicholls & John M. Preston & Gustavo A. Almeida, 2022. "Evaluation of flexibility in adaptation projects for climate change," Climatic Change, Springer, vol. 171(1), pages 1-17, March.
  • Handle: RePEc:spr:climat:v:171:y:2022:i:1:d:10.1007_s10584-022-03331-0
    DOI: 10.1007/s10584-022-03331-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-022-03331-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-022-03331-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amy Ruocco & Robert Nicholls & Ivan Haigh & Matthew Wadey, 2011. "Reconstructing coastal flood occurrence combining sea level and media sources: a case study of the Solent, UK since 1935," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1773-1796, December.
    2. Michelle Woodward & Zoran Kapelan & Ben Gouldby, 2014. "Adaptive Flood Risk Management Under Climate Change Uncertainty Using Real Options and Optimization," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 75-92, January.
    3. Leo Dobes, 2010. "Notes on Applying 'Real Options' to Climate Change Adaptation Measures, with Examples from Vietnam," CCEP Working Papers 0710, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    4. Trigeorgis, Lenos & Tsekrekos, Andrianos E., 2018. "Real Options in Operations Research: A Review," European Journal of Operational Research, Elsevier, vol. 270(1), pages 1-24.
    5. Wreford, Anita & Topp, Cairistiona F.E., 2020. "Impacts of climate change on livestock and possible adaptations: A case study of the United Kingdom," Agricultural Systems, Elsevier, vol. 178(C).
    6. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    7. Dawson, David A. & Hunt, Alistair & Shaw, Jon & Gehrels, W. Roland, 2018. "The Economic Value of Climate Information in Adaptation Decisions: Learning in the Sea-level Rise and Coastal Infrastructure Context," Ecological Economics, Elsevier, vol. 150(C), pages 1-10.
    8. David McInerney & Robert Lempert & Klaus Keller, 2012. "What are robust strategies in the face of uncertain climate threshold responses?," Climatic Change, Springer, vol. 112(3), pages 547-568, June.
    9. Truong, Chi & Trück, Stefan, 2016. "It’s not now or never: Implications of investment timing and risk aversion on climate adaptation to extreme events," European Journal of Operational Research, Elsevier, vol. 253(3), pages 856-868.
    10. Peter Linquiti & Nicholas Vonortas, 2012. "The Value Of Flexibility In Adapting To Climate Change: A Real Options Analysis Of Investments In Coastal Defense," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 1-33.
    11. Manocha, Nishtha & Babovic, Vladan, 2017. "Development and valuation of adaptation pathways for storm water management infrastructure," Environmental Science & Policy, Elsevier, vol. 77(C), pages 86-97.
    12. Judy Lawrence & Robert Bell & Adolf Stroombergen, 2019. "A Hybrid Process to Address Uncertainty and Changing Climate Risk in Coastal Areas Using Dynamic Adaptive Pathways Planning, Multi-Criteria Decision Analysis & Real Options Analysis: A New Zealand App," Sustainability, MDPI, vol. 11(2), pages 1-18, January.
    13. Dittrich, Ruth & Wreford, Anita & Moran, Dominic, 2016. "A survey of decision-making approaches for climate change adaptation: Are robust methods the way forward?," Ecological Economics, Elsevier, vol. 122(C), pages 79-89.
    14. Carel Eijgenraam, 2006. "Optimal safety standards for dike-ring areas," CPB Discussion Paper 62, CPB Netherlands Bureau for Economic Policy Analysis.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dobes Leo & Jotzo Frank & Stern David I., 2014. "The Economics of Global Climate Change: A Historical Literature Review," Review of Economics, De Gruyter, vol. 65(3), pages 281-320, December.
    2. Chi Truong & Matteo Malavasi & Han Li & Stefan Trueck & Pavel V. Shevchenko, 2024. "Optimal dynamic climate adaptation pathways: a case study of New York City," Papers 2402.02745, arXiv.org.
    3. Graeme Guthrie, 2019. "Real options analysis of climate-change adaptation: investment flexibility and extreme weather events," Climatic Change, Springer, vol. 156(1), pages 231-253, September.
    4. Decker, Christopher, 2018. "Utility and regulatory decision-making under conditions of uncertainty: Balancing resilience and affordability," Utilities Policy, Elsevier, vol. 51(C), pages 51-60.
    5. Thomas David Pol & Jochen Hinkel, 2019. "Uncertainty representations of mean sea-level change: a telephone game?," Climatic Change, Springer, vol. 152(3), pages 393-411, March.
    6. Adam D. McCurdy & William R. Travis, 2017. "Simulated climate adaptation in stormwater systems: evaluating the efficiency of adaptation strategies," Environment Systems and Decisions, Springer, vol. 37(2), pages 214-229, June.
    7. Graeme Guthrie, 2021. "Discounting, Disagreement, and the Option to Delay," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(1), pages 95-133, September.
    8. Haixing Liu & Yuntao Wang & Chi Zhang & Albert S. Chen & Guangtao Fu, 2018. "Assessing real options in urban surface water flood risk management under climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 1-18, October.
    9. Seiji Harikae & James S. Dyer & Tianyang Wang, 2021. "Valuing Real Options in the Volatile Real World," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 171-189, January.
    10. Silaghi, Florina & Moraux, Franck, 2022. "Trade credit contracts: Design and regulation," European Journal of Operational Research, Elsevier, vol. 296(3), pages 980-992.
    11. Ahlvik, Lassi & Iho, Antti, 2018. "Optimal geoengineering experiments," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 148-168.
    12. Davison, Matt & Merener, Nicolas, 2023. "Equilibrium and real options in the ethanol industry: Modeling and empirical evidence," Journal of Commodity Markets, Elsevier, vol. 31(C).
    13. Ebina, Takeshi & Matsushima, Noriaki & Nishide, Katsumasa, 2022. "Demand uncertainty, product differentiation, and entry timing under spatial competition," European Journal of Operational Research, Elsevier, vol. 303(1), pages 286-297.
    14. Huberts, Nick F.D. & Thijssen, Jacco J.J., 2023. "Optimal timing of non-pharmaceutical interventions during an epidemic," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1366-1389.
    15. Mariia Belaia & Michael Funke & Nicole Glanemann, 2017. "Global Warming and a Potential Tipping Point in the Atlantic Thermohaline Circulation: The Role of Risk Aversion," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(1), pages 93-125, May.
    16. Ferreira, Ricardo M. & Pereira, Paulo J., 2021. "A dynamic model for venture capitalists’ entry–exit investment decisions," European Journal of Operational Research, Elsevier, vol. 290(2), pages 779-789.
    17. Truong, Chi & Trück, Stefan & Mathew, Supriya, 2018. "Managing risks from climate impacted hazards – The value of investment flexibility under uncertainty," European Journal of Operational Research, Elsevier, vol. 269(1), pages 132-145.
    18. Lauren Chenarides & Mark Manfredo & Timothy J. Richards, 2021. "COVID‐19 and Food Supply Chains," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 43(1), pages 270-279, March.
    19. Dittrich, Ruth & Wreford, Anita & Moran, Dominic, 2016. "A survey of decision-making approaches for climate change adaptation: Are robust methods the way forward?," Ecological Economics, Elsevier, vol. 122(C), pages 79-89.
    20. Eisenack, Klaus & Paschen, Marius, 2022. "Adapting long-lived investments under climate change uncertainty," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:171:y:2022:i:1:d:10.1007_s10584-022-03331-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.