IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2103.00711.html
   My bibliography  Save this paper

Panel semiparametric quantile regression neural network for electricity consumption forecasting

Author

Listed:
  • Xingcai Zhou
  • Jiangyan Wang

Abstract

China has made great achievements in electric power industry during the long-term deepening of reform and opening up. However, the complex regional economic, social and natural conditions, electricity resources are not evenly distributed, which accounts for the electricity deficiency in some regions of China. It is desirable to develop a robust electricity forecasting model. Motivated by which, we propose a Panel Semiparametric Quantile Regression Neural Network (PSQRNN) by utilizing the artificial neural network and semiparametric quantile regression. The PSQRNN can explore a potential linear and nonlinear relationships among the variables, interpret the unobserved provincial heterogeneity, and maintain the interpretability of parametric models simultaneously. And the PSQRNN is trained by combining the penalized quantile regression with LASSO, ridge regression and backpropagation algorithm. To evaluate the prediction accuracy, an empirical analysis is conducted to analyze the provincial electricity consumption from 1999 to 2018 in China based on three scenarios. From which, one finds that the PSQRNN model performs better for electricity consumption forecasting by considering the economic and climatic factors. Finally, the provincial electricity consumptions of the next $5$ years (2019-2023) in China are reported by forecasting.

Suggested Citation

  • Xingcai Zhou & Jiangyan Wang, 2021. "Panel semiparametric quantile regression neural network for electricity consumption forecasting," Papers 2103.00711, arXiv.org.
  • Handle: RePEc:arx:papers:2103.00711
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2103.00711
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ediger, Volkan S. & Akar, Sertac, 2007. "ARIMA forecasting of primary energy demand by fuel in Turkey," Energy Policy, Elsevier, vol. 35(3), pages 1701-1708, March.
    2. Hussain, Anwar & Rahman, Muhammad & Memon, Junaid Alam, 2016. "Forecasting electricity consumption in Pakistan: the way forward," Energy Policy, Elsevier, vol. 90(C), pages 73-80.
    3. He, Yaoyao & Qin, Yang & Wang, Shuo & Wang, Xu & Wang, Chao, 2019. "Electricity consumption probability density forecasting method based on LASSO-Quantile Regression Neural Network," Applied Energy, Elsevier, vol. 233, pages 565-575.
    4. Galvao Jr., Antonio F., 2011. "Quantile regression for dynamic panel data with fixed effects," Journal of Econometrics, Elsevier, vol. 164(1), pages 142-157, September.
    5. Weron, Rafal & Misiorek, Adam, 2008. "Forecasting spot electricity prices: A comparison of parametric and semiparametric time series models," International Journal of Forecasting, Elsevier, vol. 24(4), pages 744-763.
    6. Ivan A. Canay, 2011. "A simple approach to quantile regression for panel data," Econometrics Journal, Royal Economic Society, vol. 14(3), pages 368-386, October.
    7. Yang, Youlong & Che, Jinxing & Deng, Chengzhi & Li, Li, 2019. "Sequential grid approach based support vector regression for short-term electric load forecasting," Applied Energy, Elsevier, vol. 238(C), pages 1010-1021.
    8. Ding, Song & Hipel, Keith W. & Dang, Yao-guo, 2018. "Forecasting China's electricity consumption using a new grey prediction model," Energy, Elsevier, vol. 149(C), pages 314-328.
    9. Wang, Shaojian & Zeng, Jingyuan & Liu, Xiaoping, 2019. "Examining the multiple impacts of technological progress on CO2 emissions in China: A panel quantile regression approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 140-150.
    10. Koenker, Roger, 2004. "Quantile regression for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 74-89, October.
    11. Karin Kandananond, 2011. "Forecasting Electricity Demand in Thailand with an Artificial Neural Network Approach," Energies, MDPI, vol. 4(8), pages 1-12, August.
    12. Azadeh, A. & Ghaderi, S.F. & Sohrabkhani, S., 2008. "A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran," Energy Policy, Elsevier, vol. 36(7), pages 2637-2644, July.
    13. Fan, Jing-Li & Hu, Jia-Wei & Zhang, Xian, 2019. "Impacts of climate change on electricity demand in China: An empirical estimation based on panel data," Energy, Elsevier, vol. 170(C), pages 880-888.
    14. Xu, Weijun & Gu, Ren & Liu, Youzhu & Dai, Yongwu, 2015. "Forecasting energy consumption using a new GM–ARMA model based on HP filter: The case of Guangdong Province of China," Economic Modelling, Elsevier, vol. 45(C), pages 127-135.
    15. Chen, Wenhui & Lei, Yalin, 2018. "The impacts of renewable energy and technological innovation on environment-energy-growth nexus: New evidence from a panel quantile regression," Renewable Energy, Elsevier, vol. 123(C), pages 1-14.
    16. Lamarche, Carlos, 2010. "Robust penalized quantile regression estimation for panel data," Journal of Econometrics, Elsevier, vol. 157(2), pages 396-408, August.
    17. Tang, Lei & Wang, Xifan & Wang, Xiuli & Shao, Chengcheng & Liu, Shiyu & Tian, Shijun, 2019. "Long-term electricity consumption forecasting based on expert prediction and fuzzy Bayesian theory," Energy, Elsevier, vol. 167(C), pages 1144-1154.
    18. Cai, Zongwu & Chen, Linna & Fang, Ying, 2018. "A semiparametric quantile panel data model with an application to estimating the growth effect of FDI," Journal of Econometrics, Elsevier, vol. 206(2), pages 531-553.
    19. Shao, Zhen & Gao, Fei & Zhang, Qiang & Yang, Shan-Lin, 2015. "Multivariate statistical and similarity measure based semiparametric modeling of the probability distribution: A novel approach to the case study of mid-long term electricity consumption forecasting i," Applied Energy, Elsevier, vol. 156(C), pages 502-518.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Łukasz Jarosław Kozar & Robert Matusiak & Marta Paduszyńska & Adam Sulich, 2022. "Green Jobs in the EU Renewable Energy Sector: Quantile Regression Approach," Energies, MDPI, vol. 15(18), pages 1-21, September.
    2. Abid, Nabila & Ahmad, Fayyaz & Aftab, Junaid & Razzaq, Asif, 2023. "A blessing or a burden? Assessing the impact of Climate Change Mitigation efforts in Europe using Quantile Regression Models," Energy Policy, Elsevier, vol. 178(C).
    3. Dogan, Eyup & Altinoz, Buket & Tzeremes, Panayiotis, 2020. "The analysis of ‘Financial Resource Curse’ hypothesis for developed countries: Evidence from asymmetric effects with quantile regression," Resources Policy, Elsevier, vol. 68(C).
    4. Liang Chen, 2019. "Nonparametric Quantile Regressions for Panel Data Models with Large T," Papers 1911.01824, arXiv.org, revised Sep 2020.
    5. Ben-Salha Ousama & Zmami Mourad, 2020. "The impact of private capital flows on economic growth in the MENA region," Economics and Business Review, Sciendo, vol. 6(3), pages 45-67, August.
    6. Frantisek Cech & Jozef Barunik, 2017. "Measurement of Common Risk Factors: A Panel Quantile Regression Model for Returns," Working Papers IES 2017/20, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Sep 2017.
    7. Claudiu Tiberiu Albulescu & Eugenia Grecu, 2023. "Government Interventions and Sovereign Bond Market Volatility during COVID-19: A Quantile Analysis," Mathematics, MDPI, vol. 11(5), pages 1-14, February.
    8. Panagiotidis, Theodore & Printzis, Panagiotis, 2021. "Investment and uncertainty: Are large firms different from small ones?," Journal of Economic Behavior & Organization, Elsevier, vol. 184(C), pages 302-317.
    9. Chao-Qun Ma & Jiang-Long Liu & Yi-Shuai Ren & Yong Jiang, 2019. "The Impact of Economic Growth, FDI and Energy Intensity on China’s Manufacturing Industry’s CO 2 Emissions: An Empirical Study Based on the Fixed-Effect Panel Quantile Regression Model," Energies, MDPI, vol. 12(24), pages 1-16, December.
    10. Dogan, Eyup & Altinoz, Buket & Madaleno, Mara & Taskin, Dilvin, 2020. "The impact of renewable energy consumption to economic growth: A replication and extension of Inglesi-Lotz (2016)," Energy Economics, Elsevier, vol. 90(C).
    11. Claudiu Tiberiu Albulescu & Matei Tămășilă & Ilie Mihai Tăucean, 2021. "The Nonlinear Relationship Between Firm Size and Growth in the Automotive Industry," Journal of Industry, Competition and Trade, Springer, vol. 21(3), pages 445-463, September.
    12. Denis Chetverikov & Bradley Larsen & Christopher Palmer, 2016. "IV Quantile Regression for Group‐Level Treatments, With an Application to the Distributional Effects of Trade," Econometrica, Econometric Society, vol. 84, pages 809-833, March.
    13. You, Wanhai & Guo, Yawei & Zhu, Huiming & Tang, Yong, 2017. "Oil price shocks, economic policy uncertainty and industry stock returns in China: Asymmetric effects with quantile regression," Energy Economics, Elsevier, vol. 68(C), pages 1-18.
    14. Manuel Arellano & Stéphane Bonhomme, 2016. "Nonlinear panel data estimation via quantile regressions," Econometrics Journal, Royal Economic Society, vol. 19(3), pages 61-94, October.
    15. Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
    16. Liang Chen & Yulong Huo, 2019. "A Simple Estimator for Quantile Panel Data Models Using Smoothed Quantile Regressions," Papers 1911.04729, arXiv.org.
    17. Zhang, Yingying & Wang, Huixia Judy & Zhu, Zhongyi, 2019. "Quantile-regression-based clustering for panel data," Journal of Econometrics, Elsevier, vol. 213(1), pages 54-67.
    18. Paniagua, Jordi & Figueiredo, Erik & Sapena, Juan, 2015. "Quantile regression for the FDI gravity equation," Journal of Business Research, Elsevier, vol. 68(7), pages 1512-1518.
    19. Damette, Olivier & Kouki, Imen, 2022. "Political influence and banking performance: Evidence from the African countries," The Quarterly Review of Economics and Finance, Elsevier, vol. 84(C), pages 200-207.
    20. Shabir, Mohsin & Jiang, Ping & Hashmi, Shujahat Haider & Bakhsh, Satar, 2022. "Non-linear nexus between economic policy uncertainty and bank lending," International Review of Economics & Finance, Elsevier, vol. 79(C), pages 657-679.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2103.00711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.