IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1703.06840.html
   My bibliography  Save this paper

New approaches in agent-based modeling of complex financial systems

Author

Listed:
  • T. T. Chen
  • B. Zheng
  • Y. Li
  • X. F. Jiang

Abstract

Agent-based modeling is a powerful simulation technique to understand the collective behavior and microscopic interaction in complex financial systems. Recently, the concept for determining the key parameters of the agent-based models from empirical data instead of setting them artificially was suggested. We first review several agent-based models and the new approaches to determine the key model parameters from historical market data. Based on the agents' behaviors with heterogenous personal preferences and interactions, these models are successful to explain the microscopic origination of the temporal and spatial correlations of the financial markets. We then present a novel paradigm combining the big-data analysis with the agent-based modeling. Specifically, from internet query and stock market data, we extract the information driving forces, and develop an agent-based model to simulate the dynamic behaviors of the complex financial systems.

Suggested Citation

  • T. T. Chen & B. Zheng & Y. Li & X. F. Jiang, 2017. "New approaches in agent-based modeling of complex financial systems," Papers 1703.06840, arXiv.org.
  • Handle: RePEc:arx:papers:1703.06840
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1703.06840
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hao Meng & Fei Ren & Gao-Feng Gu & Xiong Xiong & Yong-Jie Zhang & Wei-Xing Zhou & Wei Zhang, 2012. "Effects of long memory in the order submission process on the properties of recurrence intervals of large price fluctuations," Papers 1201.2825, arXiv.org.
    2. Parameswaran Gopikrishnan & Vasiliki Plerou & Luis A. Nunes Amaral & Martin Meyer & H. Eugene Stanley, 1999. "Scaling of the distribution of fluctuations of financial market indices," Papers cond-mat/9905305, arXiv.org.
    3. Menkhoff, Lukas, 2010. "The use of technical analysis by fund managers: International evidence," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2573-2586, November.
    4. Fabrizio Lillo & Salvatore Miccich� & Michele Tumminello & Jyrki Piilo & Rosario N. Mantegna, 2015. "How news affects the trading behaviour of different categories of investors in a financial market," Quantitative Finance, Taylor & Francis Journals, vol. 15(2), pages 213-229, February.
    5. Mike, Szabolcs & Farmer, J. Doyne, 2008. "An empirical behavioral model of liquidity and volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 200-234, January.
    6. V. Gontis & A. Kononovicius, 2014. "Consentaneous agent-based and stochastic model of the financial markets," Papers 1403.1574, arXiv.org, revised Jul 2014.
    7. V. Plerou & P. Gopikrishnan & L. A. N. Amaral & M. Meyer & H. E. Stanley, 1999. "Scaling of the distribution of price fluctuations of individual companies," Papers cond-mat/9907161, arXiv.org.
    8. Vasiliki Plerou & Parameswaran Gopikrishnan & H. Eugene Stanley, 2003. "Two-phase behaviour of financial markets," Nature, Nature, vol. 421(6919), pages 130-130, January.
    9. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: II. Agent-based models," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1013-1041.
    10. Andreas Walter & Friedrich Moritz Weber, 2006. "Herding in the German Mutual Fund Industry," European Financial Management, European Financial Management Association, vol. 12(3), pages 375-406, June.
    11. Lei Tan & Bo Zheng & Jun-Jie Chen & Xiong-Fei Jiang, 2015. "How volatilities nonlocal in time affect the price dynamics in complex financial systems," Papers 1502.00824, arXiv.org.
    12. Irene Giardina & Jean-Philippe Bouchaud & Marc Mezard, 2001. "Microscopic models for long ranged volatility correlations," Science & Finance (CFM) working paper archive 500024, Science & Finance, Capital Fund Management.
    13. X. F. Jiang & B. Zheng, 2012. "Anti-correlation and subsector structure in financial systems," Papers 1201.6418, arXiv.org.
    14. Roberto Savona & Maxence Soumare & Jørgen Vitting Andersen, 2015. "Financial Symmetry and Moods in the Market," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-21, April.
    15. Corazzini, Luca & Greiner, Ben, 2007. "Herding, social preferences and (non-)conformity," Economics Letters, Elsevier, vol. 97(1), pages 74-80, October.
    16. Michael C. Munnix & Takashi Shimada & Rudi Schafer & Francois Leyvraz Thomas H. Seligman & Thomas Guhr & H. E. Stanley, 2012. "Identifying States of a Financial Market," Papers 1202.1623, arXiv.org.
    17. Ilaria Bordino & Stefano Battiston & Guido Caldarelli & Matthieu Cristelli & Antti Ukkonen & Ingmar Weber, 2012. "Web Search Queries Can Predict Stock Market Volumes," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-17, July.
    18. Vygintas Gontis & Aleksejus Kononovicius, 2014. "Consentaneous Agent-Based and Stochastic Model of the Financial Markets," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-12, July.
    19. Yanhui Liu & Parameswaran Gopikrishnan & Pierre Cizeau & Martin Meyer & Chung-Kang Peng & H. Eugene Stanley, 1999. "The statistical properties of the volatility of price fluctuations," Papers cond-mat/9903369, arXiv.org, revised Mar 1999.
    20. Irene Giardina & Jean-Philippe Bouchaud & Marc M'ezard, 2001. "Microscopic Models for Long Ranged Volatility Correlations," Papers cond-mat/0105076, arXiv.org.
    21. Kaizoji, Taisei & Leiss, Matthias & Saichev, Alexander & Sornette, Didier, 2015. "Super-exponential endogenous bubbles in an equilibrium model of fundamentalist and chartist traders," Journal of Economic Behavior & Organization, Elsevier, vol. 112(C), pages 289-310.
    22. Cont, Rama & Bouchaud, Jean-Philipe, 2000. "Herd Behavior And Aggregate Fluctuations In Financial Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 4(2), pages 170-196, June.
    23. Gu, Gao-Feng & Chen, Wei & Zhou, Wei-Xing, 2008. "Empirical distributions of Chinese stock returns at different microscopic timescales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 495-502.
    24. Yoshihiro Yura & Hideki Takayasu & Didier Sornette & Misako Takayasu, 2014. "Financial Brownian particle in the layered order book fluid and Fluctuation-Dissipation relations," Papers 1401.8065, arXiv.org.
    25. Kenneth A. Kim & John R. Nofsinger, 2005. "Institutional Herding, Business Groups, and Economic Regimes: Evidence from Japan," The Journal of Business, University of Chicago Press, vol. 78(1), pages 213-242, January.
    26. Giardina, Irene & Bouchaud, Jean-Philippe & Mézard, Marc, 2001. "Microscopic models for long ranged volatility correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 28-39.
    27. Didier SORNETTE, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models," Swiss Finance Institute Research Paper Series 14-25, Swiss Finance Institute.
    28. Takao Noguchi & Neil Stewart & Christopher Y Olivola & Helen Susannah Moat & Tobias Preis, 2014. "Characterizing the Time-Perspective of Nations with Search Engine Query Data," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-5, April.
    29. Xavier Gabaix & Parameswaran Gopikrishnan & Vasiliki Plerou & H. Eugene Stanley, 2003. "A theory of power-law distributions in financial market fluctuations," Nature, Nature, vol. 423(6937), pages 267-270, May.
    30. Jun-Jie Chen & Lei Tan & Bo Zheng, 2015. "Agent-based model with multi-level herding for complex financial systems," Papers 1504.01811, arXiv.org.
    31. Dror Y Kenett & Yoash Shapira & Asaf Madi & Sharron Bransburg-Zabary & Gitit Gur-Gershgoren & Eshel Ben-Jacob, 2011. "Index Cohesive Force Analysis Reveals That the US Market Became Prone to Systemic Collapses Since 2002," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-8, April.
    32. Yoshihiro Yura & Hideki Takayasu & Didier Sornette & Misako Takayasu, 2014. "Financial Brownian Particle in the Layered Order Book Fluid and Fluctuation-Dissipation Relations," Swiss Finance Institute Research Paper Series 14-06, Swiss Finance Institute.
    33. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: II. Agent-based models," Post-Print hal-00621059, HAL.
    34. Lei Tan & Bo Zheng & Jun-Jie Chen & Xiong-Fei Jiang, 2015. "How Volatilities Nonlocal in Time Affect the Price Dynamics in Complex Financial Systems," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-16, February.
    35. J. Doyne Farmer & Duncan Foley, 2009. "The economy needs agent-based modelling," Nature, Nature, vol. 460(7256), pages 685-686, August.
    36. Raj Kumar Pan & Sitabhra Sinha, 2006. "Self-organization of price fluctuation distribution in evolving markets," Papers physics/0606213, arXiv.org, revised May 2007.
    37. Jun-jie Chen & Bo Zheng & Lei Tan, 2014. "Agent-based model with asymmetric trading and herding for complex financial systems," Papers 1407.5258, arXiv.org.
    38. Parameswaran Gopikrishnan & Martin Meyer & Luis A Nunes Amaral & H Eugene Stanley, 1998. "Inverse Cubic Law for the Probability Distribution of Stock Price Variations," Papers cond-mat/9803374, arXiv.org, revised May 1998.
    39. Ryohei Hisano & Didier Sornette & Takayuki Mizuno & Takaaki Ohnishi & Tsutomu Watanabe, 2013. "High Quality Topic Extraction from Business News Explains Abnormal Financial Market Volatility," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-12, June.
    40. D. Sornette, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based models," Papers 1404.0243, arXiv.org.
    41. Jun-Jie Chen & Bo Zheng & Lei Tan, 2013. "Agent-Based Model with Asymmetric Trading and Herding for Complex Financial Systems," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-11, November.
    42. X. F. Jiang & T. T. Chen & B. Zheng, 2014. "Structure of local interactions in complex financial dynamics," Papers 1406.0070, arXiv.org.
    43. Natividad Blasco & Pilar Corredor & Sandra Ferreruela, 2012. "Does herding affect volatility? Implications for the Spanish stock market," Quantitative Finance, Taylor & Francis Journals, vol. 12(2), pages 311-327, July.
    44. Park, Beum-Jo, 2011. "Asymmetric herding as a source of asymmetric return volatility," Journal of Banking & Finance, Elsevier, vol. 35(10), pages 2657-2665, October.
    45. Ying-Hui Shao & Gao Feng Gu & Zhi-Qiang Jiang & Wei-Xing Zhou & Didier Sornette, 2012. "Comparing the performance of FA, DFA and DMA using different synthetic long-range correlated time series," Papers 1208.4158, arXiv.org.
    46. Gao-Feng Gu & Wei-Xing Zhou, 2008. "Emergence of long memory in stock volatility from a modified Mike-Farmer model," Papers 0807.4639, arXiv.org, revised May 2009.
    47. Jean-Philippe Bouchaud & Andrew Matacz & Marc Potters, 2001. "The leverage effect in financial markets: retarded volatility and market panic," Science & Finance (CFM) working paper archive 0101120, Science & Finance, Capital Fund Management.
    48. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2007. "Agent-based Models of Financial Markets," Papers physics/0701140, arXiv.org.
    49. P. Gopikrishnan & M. Meyer & L.A.N. Amaral & H.E. Stanley, 1998. "Inverse cubic law for the distribution of stock price variations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 3(2), pages 139-140, July.
    50. X. F. Jiang & T. T. Chen & B. Zheng, 2013. "Time-reversal asymmetry in financial systems," Papers 1308.0669, arXiv.org.
    51. Ren, F. & Zheng, B. & Qiu, T. & Trimper, S., 2006. "Score-dependent payoffs and Minority Games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 649-657.
    52. Jiang, X.F. & Chen, T.T. & Zheng, B., 2013. "Time-reversal asymmetry in financial systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5369-5375.
    53. Wei Li & Fengzhong Wang & Shlomo Havlin & H. Eugene Stanley, 2011. "Financial factor influence on scaling and memory of trading volume in stock market," Papers 1106.1415, arXiv.org.
    54. Ryohei Hisano & Didier Sornette & Takayuki Mizuno & Takaaki Ohnishi & Tsutomu Watanabe, 2012. "High quality topic extraction from business news explains abnormal financial market volatility," Papers 1210.6321, arXiv.org, revised Mar 2013.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jiang-Cheng & Tao, Chen & Li, Hai-Feng, 2022. "Dynamic forecasting performance and liquidity evaluation of financial market by Econophysics and Bayesian methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    2. Kononovicius, Aleksejus & Ruseckas, Julius, 2019. "Order book model with herd behavior exhibiting long-range memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 171-191.
    3. Yan Li & Bo Zheng & Ting-Ting Chen & Xiong-Fei Jiang, 2017. "Fluctuation-driven price dynamics and investment strategies," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-15, December.
    4. Jiang, Xiong-Fei & Xiong, Long & Cen, Tao & Bai, Ling & Zhao, Na & Zhang, Jiu & Zheng, Chang-Juan & Jiang, Tian-Ying, 2022. "Analyst sentiment and earning forecast bias in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    5. Zhou, Wei & Zhong, Guang-Yan & Li, Jiang-Cheng, 2022. "Stability of financial market driven by information delay and liquidity in delay agent-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    6. Johann Lussange & Stefano Vrizzi & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2023. "Stock Price Formation: Precepts from a Multi-Agent Reinforcement Learning Model," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1523-1544, April.
    7. Aleksejus Kononovicius & Julius Ruseckas, 2018. "Order book model with herd behavior exhibiting long-range memory," Papers 1809.02772, arXiv.org, revised Apr 2019.
    8. Chen, Ting-Ting & Zheng, Bo & Li, Yan & Jiang, Xiong-Fei, 2018. "Information driving force and its application in agent-based modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 593-601.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Ting-Ting & Zheng, Bo & Li, Yan & Jiang, Xiong-Fei, 2018. "Information driving force and its application in agent-based modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 593-601.
    2. Jun-jie Chen & Bo Zheng & Lei Tan, 2014. "Agent-based model with asymmetric trading and herding for complex financial systems," Papers 1407.5258, arXiv.org.
    3. Jun-Jie Chen & Bo Zheng & Lei Tan, 2013. "Agent-Based Model with Asymmetric Trading and Herding for Complex Financial Systems," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-11, November.
    4. Jun-Jie Chen & Lei Tan & Bo Zheng, 2015. "Agent-based model with multi-level herding for complex financial systems," Papers 1504.01811, arXiv.org.
    5. Lei Tan & Bo Zheng & Jun-Jie Chen & Xiong-Fei Jiang, 2015. "How Volatilities Nonlocal in Time Affect the Price Dynamics in Complex Financial Systems," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-16, February.
    6. Fang, Wen & Ke, Jinchuan & Wang, Jun & Feng, Ling, 2016. "Linking market interaction intensity of 3D Ising type financial model with market volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 531-542.
    7. Gao-Feng Gu & Xiong Xiong & Hai-Chuan Xu & Wei Zhang & Yongjie Zhang & Wei Chen & Wei-Xing Zhou, 2021. "An empirical behavioral order-driven model with price limit rules," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-24, December.
    8. Lei Tan & Jun-Jie Chen & Bo Zheng & Fang-Yan Ouyang, 2016. "Exploring Market State and Stock Interactions on the Minute Timescale," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-13, February.
    9. Ouyang, F.Y. & Zheng, B. & Jiang, X.F., 2014. "Spatial and temporal structures of four financial markets in Greater China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 236-244.
    10. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    11. Yan Li & Bo Zheng & Ting-Ting Chen & Xiong-Fei Jiang, 2017. "Fluctuation-driven price dynamics and investment strategies," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-15, December.
    12. F. Y. Ouyang & B. Zheng & X. F. Jiang, 2014. "Spatial and temporal structures of four financial markets in Greater China," Papers 1402.1046, arXiv.org.
    13. Zhang, Yali & Wang, Jun, 2017. "Nonlinear complexity of random visibility graph and Lempel-Ziv on multitype range-intensity interacting financial dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 741-756.
    14. Zhang, Jiu & Jin, Li-Fu & Zheng, Bo & Li, Yan & Jiang, Xiong-Fei, 2022. "Simplified calculations of time correlation functions in non-stationary complex financial systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    15. Roberto Mota Navarro & Hernán Larralde, 2017. "A detailed heterogeneous agent model for a single asset financial market with trading via an order book," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-27, February.
    16. Zhong, Li-Xin & Xu, Wen-Juan & Chen, Rong-Da & Zhong, Chen-Yang & Qiu, Tian & Ren, Fei & He, Yun-Xing, 2018. "Self-reinforcing feedback loop in financial markets with coupling of market impact and momentum traders," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 301-310.
    17. Ren, F. & Zheng, B. & Chen, P., 2010. "Modeling interactions of trading volumes in financial dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2744-2750.
    18. Jiang, Xiong-Fei & Zheng, Bo & Ren, Fei & Qiu, Tian, 2017. "Localized motion in random matrix decomposition of complex financial systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 154-161.
    19. Katahira, Kei & Chen, Yu & Hashimoto, Gaku & Okuda, Hiroshi, 2019. "Development of an agent-based speculation game for higher reproducibility of financial stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 503-518.
    20. Wei-Xing Zhou, 2012. "Universal price impact functions of individual trades in an order-driven market," Quantitative Finance, Taylor & Francis Journals, vol. 12(8), pages 1253-1263, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1703.06840. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.