IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v496y2018icp593-601.html
   My bibliography  Save this article

Information driving force and its application in agent-based modeling

Author

Listed:
  • Chen, Ting-Ting
  • Zheng, Bo
  • Li, Yan
  • Jiang, Xiong-Fei

Abstract

Exploring the scientific impact of online big-data has attracted much attention of researchers from different fields in recent years. Complex financial systems are typical open systems profoundly influenced by the external information. Based on the large-scale data in the public media and stock markets, we first define an information driving force, and analyze how it affects the complex financial system. The information driving force is observed to be asymmetric in the bull and bear market states. As an application, we then propose an agent-based model driven by the information driving force. Especially, all the key parameters are determined from the empirical analysis rather than from statistical fitting of the simulation results. With our model, both the stationary properties and non-stationary dynamic behaviors are simulated. Considering the mean-field effect of the external information, we also propose a few-body model to simulate the financial market in the laboratory.

Suggested Citation

  • Chen, Ting-Ting & Zheng, Bo & Li, Yan & Jiang, Xiong-Fei, 2018. "Information driving force and its application in agent-based modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 593-601.
  • Handle: RePEc:eee:phsmap:v:496:y:2018:i:c:p:593-601
    DOI: 10.1016/j.physa.2017.12.128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117313778
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.12.128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fabrizio Lillo & Salvatore Miccich� & Michele Tumminello & Jyrki Piilo & Rosario N. Mantegna, 2015. "How news affects the trading behaviour of different categories of investors in a financial market," Quantitative Finance, Taylor & Francis Journals, vol. 15(2), pages 213-229, February.
    2. Górski, A.Z & Drożdż, S & Speth, J, 2002. "Financial multifractality and its subtleties: an example of DAX," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 496-510.
    3. T. T. Chen & B. Zheng & Y. Li & X. F. Jiang, 2017. "New approaches in agent-based modeling of complex financial systems," Papers 1703.06840, arXiv.org.
    4. X. F. Jiang & B. Zheng, 2012. "Anti-correlation and subsector structure in financial systems," Papers 1201.6418, arXiv.org.
    5. Kirchler, Michael & Huber, Jurgen, 2007. "Fat tails and volatility clustering in experimental asset markets," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 1844-1874, June.
    6. Jiang, Xiong-Fei & Zheng, Bo & Ren, Fei & Qiu, Tian, 2017. "Localized motion in random matrix decomposition of complex financial systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 154-161.
    7. Yanhui Liu & Parameswaran Gopikrishnan & Pierre Cizeau & Martin Meyer & Chung-Kang Peng & H. Eugene Stanley, 1999. "The statistical properties of the volatility of price fluctuations," Papers cond-mat/9903369, arXiv.org, revised Mar 1999.
    8. Roberto Savona & Maxence Soumare & Jørgen Vitting Andersen, 2015. "Financial Symmetry and Moods in the Market," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-21, April.
    9. Ilaria Bordino & Stefano Battiston & Guido Caldarelli & Matthieu Cristelli & Antti Ukkonen & Ingmar Weber, 2012. "Web Search Queries Can Predict Stock Market Volumes," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-17, July.
    10. Ryohei Hisano & Didier Sornette & Takayuki Mizuno & Takaaki Ohnishi & Tsutomu Watanabe, 2013. "High Quality Topic Extraction from Business News Explains Abnormal Financial Market Volatility," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-12, June.
    11. D. Sornette, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based models," Papers 1404.0243, arXiv.org.
    12. X. F. Jiang & T. T. Chen & B. Zheng, 2014. "Structure of local interactions in complex financial dynamics," Papers 1406.0070, arXiv.org.
    13. Corazzini, Luca & Greiner, Ben, 2007. "Herding, social preferences and (non-)conformity," Economics Letters, Elsevier, vol. 97(1), pages 74-80, October.
    14. Kaizoji, Taisei & Leiss, Matthias & Saichev, Alexander & Sornette, Didier, 2015. "Super-exponential endogenous bubbles in an equilibrium model of fundamentalist and chartist traders," Journal of Economic Behavior & Organization, Elsevier, vol. 112(C), pages 289-310.
    15. X. F. Jiang & T. T. Chen & B. Zheng, 2013. "Time-reversal asymmetry in financial systems," Papers 1308.0669, arXiv.org.
    16. V. Gontis & A. Kononovicius, 2014. "Consentaneous agent-based and stochastic model of the financial markets," Papers 1403.1574, arXiv.org, revised Jul 2014.
    17. Lei Tan & Bo Zheng & Jun-Jie Chen & Xiong-Fei Jiang, 2015. "How volatilities nonlocal in time affect the price dynamics in complex financial systems," Papers 1502.00824, arXiv.org.
    18. Vygintas Gontis & Aleksejus Kononovicius, 2014. "Consentaneous Agent-Based and Stochastic Model of the Financial Markets," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-12, July.
    19. Tian Qiu & Bo Zheng & Guang Chen, 2010. "Adaptive financial networks with static and dynamic thresholds," Papers 1002.3432, arXiv.org.
    20. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: II. Agent-based models," Post-Print hal-00621059, HAL.
    21. Lei Tan & Bo Zheng & Jun-Jie Chen & Xiong-Fei Jiang, 2015. "How Volatilities Nonlocal in Time Affect the Price Dynamics in Complex Financial Systems," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-16, February.
    22. Andrea Morone, 2008. "Financial markets in the laboratory: an experimental analysis of some stylized facts," Quantitative Finance, Taylor & Francis Journals, vol. 8(5), pages 513-532.
    23. A. Z. Gorski & S. Drozdz & J. Speth, 2002. "Financial multifractality and its subtleties: an example of DAX," Papers cond-mat/0205482, arXiv.org.
    24. Stefan Palan, 2013. "A Review Of Bubbles And Crashes In Experimental Asset Markets," Journal of Economic Surveys, Wiley Blackwell, vol. 27(3), pages 570-588, July.
    25. Ryohei Hisano & Didier Sornette & Takayuki Mizuno & Takaaki Ohnishi & Tsutomu Watanabe, 2012. "High quality topic extraction from business news explains abnormal financial market volatility," Papers 1210.6321, arXiv.org, revised Mar 2013.
    26. Xiong-Fei Jiang & Bo Zheng & Tian Qiu & Fei Ren, 2017. "Extreme-volatility dynamics in crude oil markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 90(2), pages 1-7, February.
    27. Takao Noguchi & Neil Stewart & Christopher Y Olivola & Helen Susannah Moat & Tobias Preis, 2014. "Characterizing the Time-Perspective of Nations with Search Engine Query Data," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-5, April.
    28. Jun-Jie Chen & Lei Tan & Bo Zheng, 2015. "Agent-based model with multi-level herding for complex financial systems," Papers 1504.01811, arXiv.org.
    29. J. Doyne Farmer & Duncan Foley, 2009. "The economy needs agent-based modelling," Nature, Nature, vol. 460(7256), pages 685-686, August.
    30. Jun-Jie Chen & Bo Zheng & Lei Tan, 2013. "Agent-Based Model with Asymmetric Trading and Herding for Complex Financial Systems," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-11, November.
    31. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2007. "Agent-based Models of Financial Markets," Papers physics/0701140, arXiv.org.
    32. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: II. Agent-based models," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1013-1041.
    33. Jun-jie Chen & Bo Zheng & Lei Tan, 2014. "Agent-based model with asymmetric trading and herding for complex financial systems," Papers 1407.5258, arXiv.org.
    34. Sornette, Didier & Woodard, Ryan & Zhou, Wei-Xing, 2009. "The 2006–2008 oil bubble: Evidence of speculation, and prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1571-1576.
    35. Ying-Hui Shao & Gao Feng Gu & Zhi-Qiang Jiang & Wei-Xing Zhou & Didier Sornette, 2012. "Comparing the performance of FA, DFA and DMA using different synthetic long-range correlated time series," Papers 1208.4158, arXiv.org.
    36. Jiang, X.F. & Chen, T.T. & Zheng, B., 2013. "Time-reversal asymmetry in financial systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5369-5375.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Xiong-Fei & Xiong, Long & Cen, Tao & Bai, Ling & Zhao, Na & Zhang, Jiu & Zheng, Chang-Juan & Jiang, Tian-Ying, 2022. "Analyst sentiment and earning forecast bias in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. T. Chen & B. Zheng & Y. Li & X. F. Jiang, 2017. "New approaches in agent-based modeling of complex financial systems," Papers 1703.06840, arXiv.org.
    2. Yan Li & Bo Zheng & Ting-Ting Chen & Xiong-Fei Jiang, 2017. "Fluctuation-driven price dynamics and investment strategies," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-15, December.
    3. Lei Tan & Bo Zheng & Jun-Jie Chen & Xiong-Fei Jiang, 2015. "How Volatilities Nonlocal in Time Affect the Price Dynamics in Complex Financial Systems," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-16, February.
    4. Kononovicius, Aleksejus & Ruseckas, Julius, 2019. "Order book model with herd behavior exhibiting long-range memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 171-191.
    5. Jiang, Xiong-Fei & Zheng, Bo & Ren, Fei & Qiu, Tian, 2017. "Localized motion in random matrix decomposition of complex financial systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 154-161.
    6. Lei Tan & Jun-Jie Chen & Bo Zheng & Fang-Yan Ouyang, 2016. "Exploring Market State and Stock Interactions on the Minute Timescale," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-13, February.
    7. Jun-Jie Chen & Lei Tan & Bo Zheng, 2015. "Agent-based model with multi-level herding for complex financial systems," Papers 1504.01811, arXiv.org.
    8. Jun-jie Chen & Bo Zheng & Lei Tan, 2014. "Agent-based model with asymmetric trading and herding for complex financial systems," Papers 1407.5258, arXiv.org.
    9. Aleksejus Kononovicius & Julius Ruseckas, 2018. "Order book model with herd behavior exhibiting long-range memory," Papers 1809.02772, arXiv.org, revised Apr 2019.
    10. Jun-Jie Chen & Bo Zheng & Lei Tan, 2013. "Agent-Based Model with Asymmetric Trading and Herding for Complex Financial Systems," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-11, November.
    11. Aleksejus Kononovicius & Vygintas Gontis, 2014. "Herding interactions as an opportunity to prevent extreme events in financial markets," Papers 1409.8024, arXiv.org, revised May 2015.
    12. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    13. Zhang, Jiu & Jin, Li-Fu & Zheng, Bo & Li, Yan & Jiang, Xiong-Fei, 2022. "Simplified calculations of time correlation functions in non-stationary complex financial systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    14. Inoua, Sabiou M. & Smith, Vernon L., 2023. "A classical model of speculative asset price dynamics," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    15. Jiang, Xiong-Fei & Xiong, Long & Cen, Tao & Bai, Ling & Zhao, Na & Zhang, Jiu & Zheng, Chang-Juan & Jiang, Tian-Ying, 2022. "Analyst sentiment and earning forecast bias in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    16. Torsten Trimborn & Philipp Otte & Simon Cramer & Max Beikirch & Emma Pabich & Martin Frank, 2018. "SABCEMM-A Simulator for Agent-Based Computational Economic Market Models," Papers 1801.01811, arXiv.org, revised Oct 2018.
    17. Gao-Feng Gu & Xiong Xiong & Hai-Chuan Xu & Wei Zhang & Yongjie Zhang & Wei Chen & Wei-Xing Zhou, 2021. "An empirical behavioral order-driven model with price limit rules," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-24, December.
    18. Zhong, Li-Xin & Xu, Wen-Juan & Chen, Rong-Da & Zhong, Chen-Yang & Qiu, Tian & Ren, Fei & He, Yun-Xing, 2018. "Self-reinforcing feedback loop in financial markets with coupling of market impact and momentum traders," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 301-310.
    19. Pietro DeLellis & Anna DiMeglio & Franco Garofalo & Francesco Lo Iudice, 2017. "The evolving cobweb of relations among partially rational investors," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-21, February.
    20. Stein, Julian Alexander Cornelius & Braun, Dieter, 2019. "Stability of a time-homogeneous system of money and antimoney in an agent-based random economy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 232-249.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:496:y:2018:i:c:p:593-601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.