IDEAS home Printed from https://ideas.repec.org/p/ags/pugtwp/332575.html
   My bibliography  Save this paper

Analyzing Future Water Scarcity in Computable General Equilibrium Models

Author

Listed:
  • Liu, Jing
  • Hertel, Thomas
  • Taheripour, Farzad

Abstract

Incorporating water into a computable general equilibrium (CGE) model operating at global scale can be extremely demanding due to the absence of standardized data, the sheer dimensions caused by intersecting river basins with countries, and difficulties to model demand for and supply of water. This has led many authors to introduce water in their CGE modeling framework in different ways and at different spatial and sectoral aggregation levels. Of course, simplifying market for water and sacrificing the geographical realism risk introducing errors caused by inappropriate aggregation. In this paper we use a global CGE model which distinguished between rainfed and irrigated crops and traces supply of and demand for water at river basin by agro ecological zone (AEZ) and country to investigate the three most commonly practiced simplifications: 1) tackling global questions in a national level model; 2) collapsing irrigated and rainfed crop production into a single sector; and 3) removing river basin boundaries within a country. In each case, we compare their performance in predicting the impacts of future irrigation scarcity on international trade, crop output, prices and land use change, relative to the full scale model. As might be expected, the single region model does a pretty good job of matching outcomes for that region, although changes in bilateral trade can entail significant errors. When it comes to the elimination of sub-national river basins and irrigation location, we find that, if the research question has to do with changes in national-scale trade, production, consumption, and prices, it may be sufficient to ignore the sub-national water and land heterogeneity in global economic analysis of water scarcity. However, when decision makers have an interest in the distribution of inputs and outputs within a region, preserving the river basin and sectoral detail in the model brings considerable added value to the analysis.

Suggested Citation

  • Liu, Jing & Hertel, Thomas & Taheripour, Farzad, 2015. "Analyzing Future Water Scarcity in Computable General Equilibrium Models," Conference papers 332575, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
  • Handle: RePEc:ags:pugtwp:332575
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/332575/files/7589.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rashid Hassan & James Thurlow, 2011. "Macro–micro feedback links of water management in South Africa: CGE analyses of selected policy regimes," Agricultural Economics, International Association of Agricultural Economists, vol. 42(2), pages 235-247, March.
    2. Roberto Ponce & Francesco Bosello & Carlo Giupponi, 2012. "Integrating Water Resources into Computable General Equilibrium Models - A Survey," Working Papers 2012.57, Fondazione Eni Enrico Mattei.
    3. Mark W. Rosegrant & Claudia Ringler & Tingju Zhu & Simla Tokgoz & Prapti Bhandary, 2013. "Water and food in the bioeconomy: challenges and opportunities for development," Agricultural Economics, International Association of Agricultural Economists, vol. 44(s1), pages 139-150, November.
    4. Roman Keeney & Thomas W. Hertel, 2009. "The Indirect Land Use Impacts of United States Biofuel Policies: The Importance of Acreage, Yield, and Bilateral Trade Responses," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(4), pages 895-909.
    5. Maria Berrittella & Katrin Rehdanz & Arjen Y. Hoekstra & Roberto Roson & Richard S.J. Tol, 2006. "The Economic Impact Of Restricted Water Supply: A Computable General Equilibrium Analysis," Working Papers FNU-93, Research unit Sustainability and Global Change, Hamburg University, revised Jul 2006.
    6. Robert A. Young, 1986. "Why Are There So Few Transactions among Water Users?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 68(5), pages 1143-1151.
    7. Jason F.L. Koopman & Onno Kuik & Richard S.J. Tol & Roy Brouwer, 2015. "Water Scarcity From Climate Change And Adaptation Response In An International River Basin Context," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 1-22.
    8. Alvaro Calzadilla & Katrin Rehdanz & Richard S.J. Tol, 2008. "The Eonomic Impact Of More Sustainable Water Use In Agriculture: A Computable General Equilibrium Analysis," Working Papers FNU-169, Research unit Sustainability and Global Change, Hamburg University, revised Dec 2008.
    9. Hertel, Thomas, 1997. "Global Trade Analysis: Modeling and applications," GTAP Books, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, number 7685, December.
    10. Peter B. Dixon & Maureen T. Rimmer & Glyn Wittwer, 2011. "Saving the Southern Murray‐Darling Basin: The Economic Effects of a Buyback of Irrigation Water," The Economic Record, The Economic Society of Australia, vol. 87(276), pages 153-168, March.
    11. Decaluwe, B. & Patry, A. & Savard, L., 1999. "`When Water Is No Longer Heaven Sent: Comparative Pricing Analysis in an AGE Model," Papers 9905, Laval - Recherche en Politique Economique.
    12. Taheripour, Farzad & Thomas Hertel & Jing Liu, 2013. "Introducing water by river basin into the GTAP-BIO model: GTAP-BIO-W," GTAP Working Papers 4304, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    13. Dinar, Ariel, 2014. "Water and Economy-Wide Policy Interventions," Foundations and Trends(R) in Microeconomics, now publishers, vol. 10(2), pages 85-165, July.
    14. Garrick, Dustin & Whitten, Stuart M. & Coggan, Anthea, 2013. "Understanding the evolution and performance of water markets and allocation policy: A transaction costs analysis framework," Ecological Economics, Elsevier, vol. 88(C), pages 195-205.
    15. Olmstead, Sheila M., 2014. "Climate change adaptation and water resource management: A review of the literature," Energy Economics, Elsevier, vol. 46(C), pages 500-509.
    16. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    17. Dudu, Hasan & Chumi, Sinqobile, 2008. "Economics of irrigation water management : a literature survey with focus on partial and general equilibrium models," Policy Research Working Paper Series 4556, The World Bank.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bagstad, Kenneth J. & Ancona, Zachary H. & Hass, Julie & Glynn, Pierre D. & Wentland, Scott & Vardon, Michael & Fay, John, 2020. "Integrating physical and economic data into experimental water accounts for the United States: Lessons and opportunities," Ecosystem Services, Elsevier, vol. 45(C).
    2. Osman, Rehab & Ferrari, Emanuele & McDonald, Scott, 2019. "Is improving Nile water quality ‘fruitful’?," Ecological Economics, Elsevier, vol. 161(C), pages 20-31.
    3. Nechifor, Victor, 2018. "Global economic and food security impacts of demand-driven water scarcity," Conference papers 332931, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    4. Kirby Ledvina & Niven Winchester & Kenneth Strzepek & John M. Reilly, 2018. "New Data for Representing Irrigated Agriculture in Economy-Wide Models," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 3(1), pages 122-155, June.
    5. Dario Aversa & Nino Adamashvili & Mariantonietta Fiore & Alessia Spada, 2022. "Scoping Review (SR) via Text Data Mining on Water Scarcity and Climate Change," Sustainability, MDPI, vol. 15(1), pages 1-13, December.
    6. Villoria, Nelson B. & Liu, Jing, 2018. "Using spatially explicit data to improve our understanding of land supply responses: An application to the cropland effects of global sustainable irrigation in the Americas," Land Use Policy, Elsevier, vol. 75(C), pages 411-419.
    7. Erwin Corong & Thomas Hertel & Robert McDougall & Marinos Tsigas & Dominique van der Mensbrugghe, 2017. "The Standard GTAP Model, version 7," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 2(1), pages 1-119, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    2. Haqiqi, Iman & Hertel, Thomas W., 2016. "Decomposing Irrigation Water Use Changes in Equilibrium Models," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236185, Agricultural and Applied Economics Association.
    3. Dinar, Ariel, 2012. "Economy-wide implications of direct and indirect policy interventions in the water sector: lessons from recent work and future research needs," Policy Research Working Paper Series 6068, The World Bank.
    4. Osman, Rehab & Ferrari, Emanuele & McDonald, Scott, 2015. "Water Quality Assessment SAM/CGE and Satellite Accounts Integrated Framework-Egypt," 89th Annual Conference, April 13-15, 2015, Warwick University, Coventry, UK 204292, Agricultural Economics Society.
    5. Roberto Ponce & Francesco Bosello & Carlo Giupponi, 2012. "Integrating Water Resources into Computable General Equilibrium Models - A Survey," Working Papers 2012.57, Fondazione Eni Enrico Mattei.
    6. Jason F. L. Koopman & Onno Kuik & Richard S. J. Tol & Roy Brouwer, 2017. "The potential of water markets to allocate water between industry, agriculture, and public water utilities as an adaptation mechanism to climate change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(2), pages 325-347, February.
    7. Calzadilla, Alvaro & Rehdanz, Katrin & Tol, Richard S.J., 2011. "The GTAP-W model: Accounting for water use in agriculture," Kiel Working Papers 1745, Kiel Institute for the World Economy (IfW Kiel).
    8. Roberto Ponce & Ramiro Parrado & Alejandra Stehr & Francesco Bosello, 2016. "Climate Change, Water Scarcity in Agriculture and the Economy-Wide Impacts in a CGE Framework," Working Papers 2016.79, Fondazione Eni Enrico Mattei.
    9. Jaume González, 2011. "Assessing the Macroeconomic Impact of Water Supply Restrictions Through an Input–Output Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(9), pages 2335-2347, July.
    10. Nicholas Kilimani, 2014. "Water Taxation and the Double Dividend Hypothesis," Working Papers 201451, University of Pretoria, Department of Economics.
    11. Calzadilla, Alvaro & Rehdanz, Katrin & Tol, Richard S.J., 2008. "Water scarcity and the impact of improved irrigation management: A CGE analysis," Conference papers 331788, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    12. Victor Nechifor & Matthew Winning, 2017. "The impacts of higher CO2 concentrations over global crop production and irrigation water requirements," EcoMod2017 10487, EcoMod.
    13. Maria Berrittella & Katrin Rehdanz & Richard S.J. Tol, 2006. "The Economic Impact of the South-North Water Transfer Project in China: A Computable General Equilibrium Analysis," Working Papers 2006.154, Fondazione Eni Enrico Mattei.
    14. Chokri Thabet, 2014. "Water Policy and Poverty Reduction in Rural Area: A Comparative Economy Wide Analysis for Morocco and Tunisia," Working Papers 860, Economic Research Forum, revised Nov 2014.
    15. Perez Blanco, C.D., 2018. "Waters run deep: A coupled Revealed Preference and CGE model to assess the economy-wide impacts of agricultural water buyback," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277028, International Association of Agricultural Economists.
    16. Osman, Rehab & Ferrari, Emanuele, 2019. "The Poverty and Distributional Impacts of Water Quality: A CGE-Micro Analysis for Egypt," Conference papers 333119, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    17. Rehab Osman & Emanuele Ferrari & Scott McDonald, 2016. "Water Scarcity and Irrigation Efficiency in Egypt," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 1-28, December.
    18. Tewodros Negash Kahsay & Onno Kuik & Roy Brouwer & Pieter Van Der Zaag, 2017. "The Economy-Wide Impacts Of Climate Change And Irrigation Development In The Nile Basin: A Computable General Equilibrium Approach," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 1-30, February.
    19. Teotónio, Carla & Rodríguez, Miguel & Roebeling, Peter & Fortes, Patrícia, 2020. "Water competition through the ‘water-energy’ nexus: Assessing the economic impacts of climate change in a Mediterranean context," Energy Economics, Elsevier, vol. 85(C).
    20. Osman, Rehab & Ferrari, Emanuele & McDonald, Scott, 2015. "Water Quality Assessment SAM/CGE and Satellite Accounts Integrated Framework," 89th Annual Conference, April 13-15, 2015, Warwick University, Coventry, UK 204291, Agricultural Economics Society.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:pugtwp:332575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/gtpurus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.