IDEAS home Printed from https://ideas.repec.org/p/ags/eaae14/182765.html
   My bibliography  Save this paper

A Distance Function Model with Good and Bad Outputs

Author

Listed:
  • Bokusheva, Raushan
  • Kumbhakar, Subal C.

Abstract

We present an approach that pursues an adequate representation of product transformation possibilities for a technology generating, in addition to marketed (good) products, some environmentally detrimental non-marketed byproducts (bad outputs). As the shadow price of a non-marketed output depends on its marginal transformation rates with marketed outputs, representation of technological relationships between different groups of outputs deserves a particular attention. We model the technology by using two functions: an input distance function describing technically feasible input-output combinations, and a hedonic output function capturing relationships among good and bad outputs. This procedure offers more appropriate consideration and modeling of the interactions between different groups of outputs. An empirical application of the approach to the case of Dutch dairy farms1 demonstrates the complexity of interactions between outputs and the value of more elaborate representations of production possibilities. The analysis indicates that nitrogen surplus abatement costs vary widely among Dutch dairy farms and that these costs have increased substantially over time.

Suggested Citation

  • Bokusheva, Raushan & Kumbhakar, Subal C., 2014. "A Distance Function Model with Good and Bad Outputs," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182765, European Association of Agricultural Economists.
  • Handle: RePEc:ags:eaae14:182765
    DOI: 10.22004/ag.econ.182765
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/182765/files/Bokusheva-Distance_function_model_with_good_and_bad_outputs-258_a.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.182765?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fernandez C. & Koop G. & Steel M.F.J., 2002. "Multiple-Output Production With Undesirable Outputs: An Application to Nitrogen Surplus in Agriculture," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 432-442, June.
    2. Luenberger, David G., 1992. "Benefit functions and duality," Journal of Mathematical Economics, Elsevier, vol. 21(5), pages 461-481.
    3. Murty, Sushama & Russell, R. Robert, 2010. "On modeling pollution-generating technologies," Economic Research Papers 271176, University of Warwick - Department of Economics.
    4. Atakelty Hailu & Robert Chambers, 2012. "A Luenberger soil-quality indicator," Journal of Productivity Analysis, Springer, vol. 38(2), pages 145-154, October.
    5. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    6. David Stern, 2011. "Elasticities of substitution and complementarity," Journal of Productivity Analysis, Springer, vol. 36(1), pages 79-89, August.
    7. Charles Blackorby & R. Robert Russell, 1981. "The Morishima Elasticity of Substitution; Symmetry, Constancy, Separability, and its Relationship to the Hicks and Allen Elasticities," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 48(1), pages 147-158.
    8. Coggins, Jay S. & Swinton, John R., 1996. "The Price of Pollution: A Dual Approach to Valuing SO2Allowances," Journal of Environmental Economics and Management, Elsevier, vol. 30(1), pages 58-72, January.
    9. Rolf Färe & Shawna Grosskopf, 1998. "Shadow Pricing of Good and Bad Commodities," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(3), pages 584-590.
    10. Reinhard, Stijn & Knox Lovell, C. A. & Thijssen, Geert J., 2000. "Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA," European Journal of Operational Research, Elsevier, vol. 121(2), pages 287-303, March.
    11. Grigorios Emvalomatis & Spiro E. Stefanou & Alfons Oude Lansink, 2010. "A Reduced-Form Model for Dynamic Efficiency Measurement: Application to Dairy Farms in Germany and The Netherlands," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(1), pages 161-174.
    12. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    13. Chambers,Robert G., 1988. "Applied Production Analysis," Cambridge Books, Cambridge University Press, number 9780521314275.
    14. Stijn Reinhard & C.A. Knox Lovell & Geert Thijssen, 1999. "Econometric Estimation of Technical and Environmental Efficiency: An Application to Dutch Dairy Farms," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(1), pages 44-60.
    15. Subal C. Kumbhakar & Efthymios G. Tsionas, 2008. "Estimation of input‐oriented technical efficiency using a nonhomogeneous stochastic production frontier model," Agricultural Economics, International Association of Agricultural Economists, vol. 38(1), pages 99-108, January.
    16. Chambers, Robert G. & Chung, Yangho & Fare, Rolf, 1996. "Benefit and Distance Functions," Journal of Economic Theory, Elsevier, vol. 70(2), pages 407-419, August.
    17. Hailu, Atakelty & Veeman, Terrence S., 2000. "Environmentally Sensitive Productivity Analysis of the Canadian Pulp and Paper Industry, 1959-1994: An Input Distance Function Approach," Journal of Environmental Economics and Management, Elsevier, vol. 40(3), pages 251-274, November.
    18. Murty, Sushama & Robert Russell, R. & Levkoff, Steven B., 2012. "On modeling pollution-generating technologies," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 117-135.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Hong-Zhou & Kopsakangas-Savolainen, Maria & Yan, Ming-Zhe & Wang, Jian-Lin & Xie, Bai-Chen, 2019. "Which provincial administrative regions in China should reduce their coal consumption? An environmental energy input requirement function based analysis," Energy Policy, Elsevier, vol. 127(C), pages 51-63.
    2. Quintano, Claudio & Mazzocchi, Paolo & Rocca, Antonella, 2021. "Evaluation of the eco-efficiency of territorial districts with seaport economic activities," Utilities Policy, Elsevier, vol. 71(C).
    3. Bhattacharyya, Aditi & Kutlu, Levent & Sickles, Robin C., 2018. "Pricing Inputs and Outputs: Market prices versus shadow prices, market power, and welfare analysis," Working Papers 18-009, Rice University, Department of Economics.
    4. Dakpo, K Hervé, 2016. "On modeling pollution-generating technologies: a new formulation of the by-production approach," Working Papers 245191, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    5. K Hervé Dakpo, 2016. "On modeling pollution-generating technologies: a new formulation of the by-production approach," Working Papers SMART 16-06, INRAE UMR SMART.
    6. Adewale Henry Adenuga & John Davis & George Hutchinson & Trevor Donnellan & Myles Patton, 2019. "Environmental Efficiency and Pollution Costs of Nitrogen Surplus in Dairy Farms: A Parametric Hyperbolic Technology Distance Function Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(3), pages 1273-1298, November.
    7. Silva, Felipe & Fulginiti, Lilyan & Perrin, Richard, 2016. "Trade-off between amazon forest and agriculture in Brazil – shadow price and their substitution estimative for 2006," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235800, Agricultural and Applied Economics Association.
    8. Silva, Felipe & Fulginiti, Lilyan E. & Perrin, Richard K., 2016. "Did technical change in agricultural production decrease the emission of pollutants on the Amazon Forest during 1990-2009?," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 230092, Southern Agricultural Economics Association.
    9. Tamara Rudinskaya & Zdeňka Náglová, 2021. "Analysis of Consumption of Nitrogen Fertilisers and Environmental Efficiency in Crop Production of EU Countries," Sustainability, MDPI, vol. 13(16), pages 1-13, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emir Malikov & Raushan Bokusheva & Subal C. Kumbhakar, 2018. "A hedonic-output-index-based approach to modeling polluting technologies," Empirical Economics, Springer, vol. 54(1), pages 287-308, February.
    2. Ke Wang & Yujiao Xian & Chia-Yen Lee & Yi-Ming Wei & Zhimin Huang, 2019. "On selecting directions for directional distance functions in a non-parametric framework: a review," Annals of Operations Research, Springer, vol. 278(1), pages 43-76, July.
    3. Puggioni, Daniela & Stefanou, Spiro E., 2016. "The Value of Being Socially Responsible. A DEA Approach for Analyzing Efficiency and Recovering Shadow Prices of CSR Activities," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235723, Agricultural and Applied Economics Association.
    4. Adewale Henry Adenuga & John Davis & George Hutchinson & Trevor Donnellan & Myles Patton, 2019. "Environmental Efficiency and Pollution Costs of Nitrogen Surplus in Dairy Farms: A Parametric Hyperbolic Technology Distance Function Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(3), pages 1273-1298, November.
    5. Kumbhakar, Subal C. & Tsionas, Efthymios G., 2016. "The good, the bad and the technology: Endogeneity in environmental production models," Journal of Econometrics, Elsevier, vol. 190(2), pages 315-327.
    6. Magambo, Isaiah & Dikgang, Johane & Gelo, Dambala & Tregenna, Fiona, 2021. "Environmental and Technical Efficiency in Large Gold Mines in Developing Countries," MPRA Paper 108068, University Library of Munich, Germany.
    7. Emir Malikov & Subal C. Kumbhakar & Efthymios G. Tsionas, 2015. "Bayesian Approach to Disentangling Technical and Environmental Productivity," Econometrics, MDPI, vol. 3(2), pages 1-23, June.
    8. Serra, Teresa & Chambers, Robert G. & Oude Lansink, Alfons, 2014. "Measuring technical and environmental efficiency in a state-contingent technology," European Journal of Operational Research, Elsevier, vol. 236(2), pages 706-717.
    9. Dakpo, K Hervé, 2016. "On modeling pollution-generating technologies: a new formulation of the by-production approach," Working Papers 245191, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    10. Subhash C. Ray & Kankana Mukherjee & Anand Venkatesh, 2018. "Nonparametric measures of efficiency in the presence of undesirable outputs: a by-production approach," Empirical Economics, Springer, vol. 54(1), pages 31-65, February.
    11. Tateishi, Henrique Ryosuke & Bragagnolo, Cassiano & de Faria, Rosane Nunes, 2020. "Economic and environmental efficiencies of greenhouse gases’ emissions under institutional influence," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    12. Rødseth, Kenneth Løvold, 2013. "Capturing the least costly way of reducing pollution: A shadow price approach," Ecological Economics, Elsevier, vol. 92(C), pages 16-24.
    13. K Hervé Dakpo, 2016. "On modeling pollution-generating technologies: a new formulation of the by-production approach," Working Papers SMART 16-06, INRAE UMR SMART.
    14. Subhash C. Ray & Kankana Mukherjee & Anand Venkatesh, 2016. "Nonparametric Measures of Efficiency in the Presence of Undesirable Outputs: A By-production Approach with Weak Disposability," Working papers 2016-04, University of Connecticut, Department of Economics.
    15. Sushama Murty, 2015. "On the properties of an emission-generating technology and its parametric representation," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 60(2), pages 243-282, October.
    16. Ma, Chunbo & Hailu, Atakelty & You, Chaoying, 2019. "A critical review of distance function based economic research on China’s marginal abatement cost of carbon dioxide emissions," Energy Economics, Elsevier, vol. 84(C).
    17. Sushama Murty & Resham Nagpal, "undated". "Weighted index of graph efficiency improvements for a by-production technology and its application to Indian coal-based thermal power sector," Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi Discussion Papers 18-08, Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi, India.
    18. Sushama Murty & Resham Nagpal, "undated". "Measuring output-based technical efficiency of Indian coal-based thermal power plants: A by-production approach," Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi Discussion Papers 18-07, Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi, India.
    19. Graham, Mary, 2009. "Developing a social perspective to farm performance analysis," Ecological Economics, Elsevier, vol. 68(8-9), pages 2390-2398, June.
    20. Walter Briec & Kristiaan Kerstens & Ignace Van de Woestyne, 2016. "Congestion in production correspondences," Journal of Economics, Springer, vol. 119(1), pages 65-90, September.

    More about this item

    Keywords

    Research Methods/ Statistical Methods;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:eaae14:182765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/eaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.