IDEAS home Printed from https://ideas.repec.org/p/ags/aaea18/274010.html
   My bibliography  Save this paper

Estimating climate change damages in data scarce and non-competitive settings: a novel version of the Ricardian approach with an application to Mexico

Author

Listed:
  • Arellano Gonzalez, Jesus

Abstract

No abstract is available for this item.

Suggested Citation

  • Arellano Gonzalez, Jesus, 2018. "Estimating climate change damages in data scarce and non-competitive settings: a novel version of the Ricardian approach with an application to Mexico," 2018 Annual Meeting, August 5-7, Washington, D.C. 274010, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea18:274010
    DOI: 10.22004/ag.econ.274010
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/274010/files/Estimating%20climate%20change%20damages%2007172018.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.274010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Severen, Christopher & Costello, Christopher & Deschênes, Olivier, 2018. "A Forward-Looking Ricardian Approach: Do land markets capitalize climate change forecasts?," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 235-254.
    2. Mendelsohn, Robert & Dinar, Ariel & Williams, Larry, 2006. "The distributional impact of climate change on rich and poor countries," Environment and Development Economics, Cambridge University Press, vol. 11(2), pages 159-178, April.
    3. J. Taylor & Irma Adelman, 2003. "Agricultural Household Models: Genesis, Evolution, and Extensions," Review of Economics of the Household, Springer, vol. 1(1), pages 33-58, January.
    4. Frances C. Moore & David B. Lobell, 2014. "Adaptation potential of European agriculture in response to climate change," Nature Climate Change, Nature, vol. 4(7), pages 610-614, July.
    5. Carter, Michael R., 1988. "Equilibrium credit rationing of small farm agriculture," Journal of Development Economics, Elsevier, vol. 28(1), pages 83-103, February.
    6. Maximilian Auffhammer, 2018. "Climate Adaptive Response Estimation: Short And Long Run Impacts Of Climate Change On Residential Electricity and Natural Gas Consumption Using Big Data," NBER Working Papers 24397, National Bureau of Economic Research, Inc.
    7. Kurukulasuriya, Pradeep & Mendelsohn, Robert, 2008. "A Ricardian analysis of the impact of climate change on African cropland," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 2(1), pages 1-23, March.
    8. Maximilian Auffhammer & Solomon M. Hsiang & Wolfram Schlenker & Adam Sobel, 2013. "Using Weather Data and Climate Model Output in Economic Analyses of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(2), pages 181-198, July.
    9. Katrina Jessoe & Dale T. Manning & J. Edward Taylor, 2018. "Climate Change and Labour Allocation in Rural Mexico: Evidence from Annual Fluctuations in Weather," Economic Journal, Royal Economic Society, vol. 128(608), pages 230-261, February.
    10. Alain de Janvry & Kyle Emerick & Marco Gonzalez-Navarro & Elisabeth Sadoulet, 2015. "Delinking Land Rights from Land Use: Certification and Migration in Mexico," American Economic Review, American Economic Association, vol. 105(10), pages 3125-3149, October.
    11. Gammans, Matthew & Mérel, Pierre & Ortiz-Bobea, Ariel, 2016. "The impact of climate change on cereal yields: Statistical evidence from France," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236322, Agricultural and Applied Economics Association.
    12. Fisher, Anthony, 2009. "Climate Change and Agriculture Reconsidered," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt33v2d7vc, Department of Agricultural & Resource Economics, UC Berkeley.
    13. James Levinsohn & Amil Petrin, 2003. "Estimating Production Functions Using Inputs to Control for Unobservables," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(2), pages 317-341.
    14. Eswaran, Mukesh & Kotwal, Ashok, 1986. "Access to Capital and Agrarian Production Organisation," Economic Journal, Royal Economic Society, vol. 96(382), pages 482-498, June.
    15. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    16. Hertel, Thomas W. & Lobell, David B., 2014. "Agricultural adaptation to climate change in rich and poor countries: Current modeling practice and potential for empirical contributions," Energy Economics, Elsevier, vol. 46(C), pages 562-575.
    17. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2006. "The Impact of Global Warming on U.S. Agriculture: An Econometric Analysis of Optimal Growing Conditions," The Review of Economics and Statistics, MIT Press, vol. 88(1), pages 113-125, February.
    18. Michael R. Carter, 1994. "Sequencing Capital and Land Market Reforms for Broadly Based Growth," Wisconsin-Madison Agricultural and Applied Economics Staff Papers 379, Wisconsin-Madison Agricultural and Applied Economics Department.
    19. Aslihan Arslan & J. Edward Taylor, 2009. "Farmers’ Subjective Valuation of Subsistence Crops: The Case of Traditional Maize in Mexico," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(4), pages 956-972.
    20. Travis J. Lybbert & Aaron Smith & Daniel A. Sumner, 2014. "Weather Shocks And Inter-Hemispheric Supply Responses: Implications For Climate Change Effects On Global Food Markets," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 1-11.
    21. William R. Cline, 2007. "Global Warming and Agriculture: Impact Estimates by Country," Peterson Institute Press: All Books, Peterson Institute for International Economics, number 4037, October.
    22. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    23. Steven Passel & Emanuele Massetti & Robert Mendelsohn, 2017. "A Ricardian Analysis of the Impact of Climate Change on European Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 725-760, August.
    24. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2005. "Will U.S. Agriculture Really Benefit from Global Warming? Accounting for Irrigation in the Hedonic Approach," American Economic Review, American Economic Association, vol. 95(1), pages 395-406, March.
    25. Carter, Michael R., 1994. "Sequencing Capital And Land Market Reforms For Broadly Based Growth," Staff Papers 12689, University of Wisconsin-Madison, Department of Agricultural and Applied Economics.
    26. Marshall Burke & Melanie Craxton & Charles D. Kolstad & Chikara Onda, 2016. "Some Research Challenges In The Economics Of Climate Change," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 1-14, May.
    27. Justin Kagin & J. Edward Taylor & Antonio Yúnez-Naude, 2016. "Inverse Productivity or Inverse Efficiency? Evidence from Mexico," Journal of Development Studies, Taylor & Francis Journals, vol. 52(3), pages 396-411, March.
    28. Ortiz-Bobea, Ariel, 2016. "The Economic Impacts of Climate Change on Agriculture: Accounting for Time-invariant Unobservables in the Hedonic Approach," Working Papers 250035, Cornell University, Department of Applied Economics and Management.
    29. Seo, Sung-No Niggol & Mendelsohn, Robert & Munasinghe, Mohan, 2005. "Climate change and agriculture in Sri Lanka: a Ricardian valuation," Environment and Development Economics, Cambridge University Press, vol. 10(5), pages 581-596, October.
    30. Anthony C. Fisher & W. Michael Hanemann & Michael J. Roberts & Wolfram Schlenker, 2012. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather: Comment," American Economic Review, American Economic Association, vol. 102(7), pages 3749-3760, December.
    31. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    32. Mendelsohn, Robert & Arellano-Gonzalez, Jesus & Christensen, Peter, 2010. "A Ricardian analysis of Mexican farms," Environment and Development Economics, Cambridge University Press, vol. 15(2), pages 153-171, April.
    33. Olivier Deschênes & Michael Greenstone, 2012. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather: Reply," American Economic Review, American Economic Association, vol. 102(7), pages 3761-3773, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ariel Ortiz‐Bobea, 2020. "The Role of Nonfarm Influences in Ricardian Estimates of Climate Change Impacts on US Agriculture," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(3), pages 934-959, May.
    2. Emanuele Massetti & Steven Van Passel & Camila Apablaza, 2018. "Is Western European Agriculture Resilient to High Temperatures?," CESifo Working Paper Series 7286, CESifo.
    3. Steven Passel & Emanuele Massetti & Robert Mendelsohn, 2017. "A Ricardian Analysis of the Impact of Climate Change on European Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 725-760, August.
    4. Ariel Ortiz-Bobea, 2021. "Climate, Agriculture and Food," Papers 2105.12044, arXiv.org.
    5. Carlo Fezzi & Ian Bateman, 2015. "The Impact of Climate Change on Agriculture: Nonlinear Effects and Aggregation Bias in Ricardian Models of Farmland Values," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 57-92.
    6. Meyer, Kevin Michael, 2017. "Three essays on environmental and resource economics," ISU General Staff Papers 201701010800006585, Iowa State University, Department of Economics.
    7. Fisher, Anthony, 2014. "Climate Science and Climate Economics," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt746627gz, Department of Agricultural & Resource Economics, UC Berkeley.
    8. Severen, Christopher & Costello, Christopher & Deschênes, Olivier, 2018. "A Forward-Looking Ricardian Approach: Do land markets capitalize climate change forecasts?," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 235-254.
    9. Tao Xiang & Tariq H. Malik & Jack W. Hou & Jiliang Ma, 2022. "The Impact of Climate Change on Agricultural Total Factor Productivity: A Cross-Country Panel Data Analysis, 1961–2013," Agriculture, MDPI, vol. 12(12), pages 1-20, December.
    10. Frederick Quaye & Denis Nadolnyak & Valentina Hartarska, 2018. "Climate Change Impacts on Farmland Values in the Southeast United States," Sustainability, MDPI, vol. 10(10), pages 1-16, September.
    11. Chau Trinh Nguyen & Frank Scrimgeour, 2022. "Measuring the impact of climate change on agriculture in Vietnam: A panel Ricardian analysis," Agricultural Economics, International Association of Agricultural Economists, vol. 53(1), pages 37-51, January.
    12. BEN ZAIED, YOUNES & Zouabi, Oussama, 2015. "Climate change impacts on agriculture: A panel cointegration approach and application to Tunisia," MPRA Paper 64711, University Library of Munich, Germany.
    13. Bareille, François & Chakir, Raja, 2023. "The impact of climate change on agriculture: A repeat-Ricardian analysis," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    14. Fisher, A. C & Le, P. V, 2014. "Climate Policy: Science, Economics, and Extremes," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt6tj3j4jb, Department of Agricultural & Resource Economics, UC Berkeley.
    15. Mora-Rivera, José Jorge, 2013. "efectos del cambio climático sobre la renta de la tierra de guatemala: un enfoque ricardiano," eseconomía, Escuela Superior de Economía, Instituto Politécnico Nacional, vol. 0(38), pages 7-38, segundo t.
    16. Abdul Quddoos & Klaus Salhofer & Ulrich B. Morawetz, 2023. "Utilising farm‐level panel data to estimate climate change impacts and adaptation potentials," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(1), pages 75-99, February.
    17. Meyer, Kevin & Keiser, David A., 2016. "Adapting to Climate Change Through Tile Drainage: A Structural Ricardian Analysis," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235932, Agricultural and Applied Economics Association.
    18. Richard S.J. Tol, 2020. "The Economic Impact of Weather and Climate," Video Library 2094, Department of Economics, University of Sussex Business School.
    19. Balistreri, Edward J. & Tarr, David G., 2011. "Services Liberalization in Preferential Trade Arrangements: The Case of Kenya," Conference papers 332152, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    20. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2020. "Climate Change and the Distribution of Agricultural Output," Working Papers 2003E, University of Ottawa, Department of Economics.

    More about this item

    Keywords

    Environmental and Nonmarket Valuation; Production Economics; Research Methods/Econometrics/Stats;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea18:274010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.