IDEAS home Printed from https://ideas.repec.org/p/ags/aaea17/259188.html
   My bibliography  Save this paper

The Feasibility of Area-wide Pest Management under Heterogeneity and Uncertainty: The Case of Citrus Health Management Areas

Author

Listed:
  • Grogan, Kelly A.
  • Chakravarty, Shourish

Abstract

No abstract is available for this item.

Suggested Citation

  • Grogan, Kelly A. & Chakravarty, Shourish, 2017. "The Feasibility of Area-wide Pest Management under Heterogeneity and Uncertainty: The Case of Citrus Health Management Areas," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259188, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea17:259188
    DOI: 10.22004/ag.econ.259188
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/259188/files/Abstracts_17_05_24_21_22_02_55__72_196_115_216_0.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.259188?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Liu, Yanxu & Sims, Charles, 2016. "Spatial-dynamic externalities and coordination in invasive species control," Resource and Energy Economics, Elsevier, vol. 44(C), pages 23-38.
    2. Cheryl Brown & Lori Lynch & David Zilberman, 2002. "The Economics of Controlling Insect-Transmitted Plant Diseases," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(2), pages 279-291.
    3. Gershon Feder, 1979. "Pesticides, Information, and Pest Management under Uncertainty," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 61(1), pages 97-103.
    4. Uri Regev & Andrew P. Gutierrez & Gershon Feder, 1976. "Pests as a Common Property Resource: A Case Study of Alfalfa Weevil Control," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 58(2), pages 186-197.
    5. Regev, Uri & Shalit, Haim & Gutierrez, A. P., 1983. "On the optimal allocation of pesticides with increasing resistance: The case of alfalfa weevil," Journal of Environmental Economics and Management, Elsevier, vol. 10(1), pages 86-100, March.
    6. Marten, Alex L. & Moore, Christopher C., 2011. "An options based bioeconomic model for biological and chemical control of invasive species," Ecological Economics, Elsevier, vol. 70(11), pages 2050-2061, September.
    7. repec:ags:jrapmc:122310 is not listed on IDEAS
    8. Lars J. Olson & Santanu Roy, 2002. "The Economics of Controlling a Stochastic Biological Invasion," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(5), pages 1311-1316.
    9. Shady S. Atallah & Miguel I. Gómez & Jon M. Conrad & Jan P. Nyrop, 2015. "A Plant-Level, Spatial, Bioeconomic Model of Plant Disease Diffusion and Control: Grapevine Leafroll Disease," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(1), pages 199-218.
    10. Erik Lichtenberg & David Zilberman, 1986. "The Econometrics of Damage Control: Why Specification Matters," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 68(2), pages 261-273.
    11. Roosen, Jutta & Hennessy, David A., 2001. "An Equilibrium Analysis Of Antibiotics Use And Replanting Decisions In Apple Production," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 26(2), pages 1-15, December.
    12. Feder, G. & Regev, U., 1975. "Biological interactions and environmental effects in the economics of pest control," Journal of Environmental Economics and Management, Elsevier, vol. 2(2), pages 75-91, December.
    13. Rebecca S. Epanchin-Niell & James E. Wilen, 2015. "Individual and Cooperative Management of Invasive Species in Human-mediated Landscapes," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(1), pages 180-198.
    14. Kelly A. Grogan & Mauricio Mosquera, 2015. "The Effects and Value of a Resistant Perennial Variety: An Application to Pudrición del Cogollo Disease," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(1), pages 260-281.
    15. Atanu Saha & C. Richard Shumway & Arthur Havenner, 1997. "The Economics and Econometrics of Damage Control," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(3), pages 773-785.
    16. David Aadland & Charles Sims & David Finnoff, 2015. "Spatial Dynamics of Optimal Management in Bioeconomic Systems," Computational Economics, Springer;Society for Computational Economics, vol. 45(4), pages 545-577, April.
    17. Plant, Richard E. & Mangel, Marc & Flynn, Lawrence E., 1985. "Multiseasonal management of an agricultural pest II: the economic optimization problem," Journal of Environmental Economics and Management, Elsevier, vol. 12(1), pages 45-61, March.
    18. Epanchin-Niell, Rebecca S. & Wilen, James E., 2012. "Optimal spatial control of biological invasions," Journal of Environmental Economics and Management, Elsevier, vol. 63(2), pages 260-270.
    19. Saphores, Jean-Daniel M. & Shogren, Jason F., 2005. "Managing exotic pests under uncertainty: optimal control actions and bioeconomic investigations," Ecological Economics, Elsevier, vol. 52(3), pages 327-339, February.
    20. Grogan, Kelly A. & Goodhue, Rachael E., 2012. "Spatial Externalities of Pest Control Decisions in the California Citrus Industry," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 37(1), pages 1-24, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charles Sims & David Finnoff & Jason F. Shogren, 2018. "Taking One for the Team: Is Collective Action More Responsive to Ecological Change?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(3), pages 589-615, July.
    2. Cobourn, Kelly M. & Burrack, Hannah J. & Goodhue, Rachael E. & Williams, Jeffrey C. & Zalom, Frank G., 2011. "Implications of simultaneity in a physical damage function," Journal of Environmental Economics and Management, Elsevier, vol. 62(2), pages 278-289, September.
    3. Mitchell, Paul D., 2001. "Additive Versus Proportional Pest Damage Functions: Why Ecology Matters," 2001 Annual meeting, August 5-8, Chicago, IL 20775, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    4. Xiaoxue Du & Levan Elbakidze & Liang Lu & R. Garth Taylor, 2022. "Climate Smart Pest Management," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    5. Sims, Charles & Finnoff, David, 2013. "When is a “wait and see” approach to invasive species justified?," Resource and Energy Economics, Elsevier, vol. 35(3), pages 235-255.
    6. Theodoros Skevas & Spiro E. Stefanou & Alfons Oude Lansink, 2013. "Do Farmers Internalise Environmental Spillovers of Pesticides in Production?," Journal of Agricultural Economics, Wiley Blackwell, vol. 64(3), pages 624-640, September.
    7. Grogan, Kelly A., 2013. "When Ignorance Is Not Bliss: Pest Control Decisions Involving Beneficial Insects," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149610, Agricultural and Applied Economics Association.
    8. Fuller, Kate Binzen & Sanchirico, James N. & Alston, Julian M., 2017. "The Spatial-Dynamic Benefits from Cooperative Disease Control in a Perennial Crop," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 42(2), May.
    9. Kelly M. Cobourn & Gregory S. Amacher & Robert G. Haight, 2019. "Cooperative Management of Invasive Species: A Dynamic Nash Bargaining Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(4), pages 1041-1068, April.
    10. Grogan, Kelly A., 2014. "When ignorance is not bliss: Pest control decisions involving beneficial insects," Ecological Economics, Elsevier, vol. 107(C), pages 104-113.
    11. Shady S. Atallah & Miguel I. Gómez & Jon M. Conrad, 2017. "Specification of Spatial-Dynamic Externalities and Implications for Strategic Behavior in Disease Control," Land Economics, University of Wisconsin Press, vol. 93(2), pages 209-229.
    12. Liu, Yanxu & Sims, Charles, 2016. "Spatial-dynamic externalities and coordination in invasive species control," Resource and Energy Economics, Elsevier, vol. 44(C), pages 23-38.
    13. Costello, Christopher & Quérou, Nicolas & Tomini, Agnes, 2017. "Private eradication of mobile public bads," European Economic Review, Elsevier, vol. 94(C), pages 23-44.
    14. Cobourn, Kelly M. & Goodhue, Rachael E. & Williams, Jeffrey C., 2009. "The Role of Harvest Timing in Pest Management: Grower Response to Infestation by the California Olive Fruit Fly," 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin 49475, Agricultural and Applied Economics Association.
    15. Olson, Lars J., 2006. "The Economics of Terrestrial Invasive Species: A Review of the Literature," Agricultural and Resource Economics Review, Cambridge University Press, vol. 35(1), pages 178-194, April.
    16. Regmi, Anita, 1990. "The value of information in integrated pest management of corn rootworm and European corn borer in Minnesota," Faculty and Alumni Dissertations 307267, University of Minnesota, Department of Applied Economics.
    17. Carpentier, A. & Reboud, X., 2018. "Why farmers consider pesticides the ultimate in crop protection: economic and behavioral insights," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277528, International Association of Agricultural Economists.
    18. Finnoff, David & Shogren, Jason F. & Leung, Brian & Lodge, David, 2005. "The importance of bioeconomic feedback in invasive species management," Ecological Economics, Elsevier, vol. 52(3), pages 367-381, February.
    19. Marsh, Thomas L. & Huffaker, Ray G. & Folwell, Raymond J. & Long, Gary, 1998. "An Intraseasonal Bioeconomic Model Of Plrv Net Necrosis," 1998 Annual meeting, August 2-5, Salt Lake City, UT 20935, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    20. Charles Sims & David Finnoff & Jason Shogren, 2016. "Bioeconomics of invasive species: using real options theory to integrate ecology, economics, and risk management," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(1), pages 61-70, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea17:259188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.