IDEAS home Printed from https://ideas.repec.org/p/ags/aaea01/20775.html
   My bibliography  Save this paper

Additive Versus Proportional Pest Damage Functions: Why Ecology Matters

Author

Listed:
  • Mitchell, Paul D.

Abstract

Economic analyses of pests typically assume damage is either additively separable from pest free yield or proportional to it. This paper describes the ecological assumptions required for additive and proportional damage functions to demonstrate that both specifications are reasonable. Ecological research supports a proportional damage function for competitive pests such as weeds, while for insect pests the appropriate damage function depends on the level of pest free yield. Theoretical analysis identifies differences between additive and proportional damage functions in terms of the impact of pest control on output variance and the concavity of output in the pest control input.

Suggested Citation

  • Mitchell, Paul D., 2001. "Additive Versus Proportional Pest Damage Functions: Why Ecology Matters," 2001 Annual meeting, August 5-8, Chicago, IL 20775, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  • Handle: RePEc:ags:aaea01:20775
    DOI: 10.22004/ag.econ.20775
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/20775/files/sp01mi01.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.20775?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Melanie Blackwell & Pagoulatos Angelos, 1992. "The Econometrics of Damage Control," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 74(4), pages 1040-1044.
    2. Thomas L. Marsh & Ray G. Huffaker & Garrell E. Long, 2000. "Optimal Control of Vector-Virus-Plant Interactions: The Case of Potato Leafroll Virus Net Necrosis," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 82(3), pages 556-569.
    3. Underwood, Nora A. & Caputo, Michael R., 1996. "Environmental and Agricultural Policy Effects on Information Acquisition and Input Choice," Journal of Environmental Economics and Management, Elsevier, vol. 31(2), pages 198-218, September.
    4. Carolyn R. Harper & David Zilberman, 1989. "Pest Externalities from Agricultural Inputs," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(3), pages 692-702.
    5. Hovav Talpaz & Itshak Borosh, 1974. "Strategy for Pesticide Use: Frequency and Applications," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 56(4), pages 769-775.
    6. Bruce A. Babcock & Erik Lichtenberg & David Zilberman, 1992. "Impact of Damage Control and Quality of Output: Estimating Pest Control Effectiveness," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 74(1), pages 163-172.
    7. Gershon Feder, 1979. "Pesticides, Information, and Pest Management under Uncertainty," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 61(1), pages 97-103.
    8. Uri Regev & Andrew P. Gutierrez & Gershon Feder, 1976. "Pests as a Common Property Resource: A Case Study of Alfalfa Weevil Control," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 58(2), pages 186-197.
    9. Regev, Uri & Shalit, Haim & Gutierrez, A. P., 1983. "On the optimal allocation of pesticides with increasing resistance: The case of alfalfa weevil," Journal of Environmental Economics and Management, Elsevier, vol. 10(1), pages 86-100, March.
    10. Moffitt, L. Joe & Hall, Darwin C. & Osteen, Craig D., 1984. "Economic Thresholds Under Uncertainty with Application to Corn Nematode Management," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 16(2), pages 151-158, December.
    11. D. J. Pannell, 1990. "Responses To Risk In Weed Control Decisions Under Expected Profit Maximisation," Journal of Agricultural Economics, Wiley Blackwell, vol. 41(3), pages 391-401, September.
    12. Erik Lichtenberg & David Zilberman, 1986. "The Econometrics of Damage Control: Why Specification Matters," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 68(2), pages 261-273.
    13. Rollins, Kimberly & Briggs, Hugh III, 1996. "Moral Hazard, Externalities, and Compensation for Crop Damages from Wildlife," Journal of Environmental Economics and Management, Elsevier, vol. 31(3), pages 368-386, November.
    14. David W. Archer & Jason F. Shogren, 1996. "Endogenous risk in weed control management," Agricultural Economics, International Association of Agricultural Economists, vol. 14(2), pages 103-122, July.
    15. Scott M. Swinton & Robert P. King, 1994. "The Value of Pest Information in a Dynamic Setting: The Case of Weed Control," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 76(1), pages 36-46.
    16. J. K. Horowitz & E. Lichtenberg, 1994. "Risk‐Reducing And Risk‐Increasing Effects Of Pesticides," Journal of Agricultural Economics, Wiley Blackwell, vol. 45(1), pages 82-89, January.
    17. Moffitt, L. Joe & Hall, Darwin C. & Osteen, Craig D., 1984. "Economic Thresholds Under Uncertainty With Application To Corn Nematode Management," Southern Journal of Agricultural Economics, Southern Agricultural Economics Association, vol. 16(2), pages 1-7, December.
    18. David A. Hennessy, 1997. "Damage Control and Increasing Returns: Further Results," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(3), pages 786-791.
    19. Feder, G. & Regev, U., 1975. "Biological interactions and environmental effects in the economics of pest control," Journal of Environmental Economics and Management, Elsevier, vol. 2(2), pages 75-91, December.
    20. Robert G. Chambers & Erik Lichtenberg, 1994. "Simple Econometrics of Pesticide Productivity," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 76(3), pages 407-417.
    21. Glenn Fox & Alfons Weersink, 1995. "Damage Control and Increasing Returns," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(1), pages 33-39.
    22. Atanu Saha & C. Richard Shumway & Arthur Havenner, 1997. "The Economics and Econometrics of Damage Control," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(3), pages 773-785.
    23. David Sunding & Joshua Zivin, 2000. "Insect Population Dynamics, Pesticide Use, and Farmworker Health," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 82(3), pages 527-540.
    24. Jean-Daniel M. Saphores, 2000. "The Economic Threshold with a Stochastic Pest Population: A Real Options Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 82(3), pages 541-555.
    25. Alain Carpentier & Robert D. Weaver, 1997. "Damage Control Productivity: Why Econometrics Matters," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(1), pages 47-61.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert G. Chambers & Giannis Karagiannis & Vangelis Tzouvelekas, 2009. "Yet Another Look at Pest Damage and Pesticide Productivity," Working Papers 0911, University of Crete, Department of Economics.
    2. Cobourn, Kelly M. & Goodhue, Rachael E. & Williams, Jeffrey C., 2009. "The Role of Harvest Timing in Pest Management: Grower Response to Infestation by the California Olive Fruit Fly," 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin 49475, Agricultural and Applied Economics Association.
    3. Theodoros Skevas & Spiro E. Stefanou & Alfons Oude Lansink, 2013. "Do Farmers Internalise Environmental Spillovers of Pesticides in Production?," Journal of Agricultural Economics, Wiley Blackwell, vol. 64(3), pages 624-640, September.
    4. Dirksmeyer, Walter, 2007. "Ist Eine Reduzierung Des Pflanzenschutzmitteleinsatzes Im Freilandgemüsebau Möglich? Ergebnisse Eines Bioökonomischen Simulationsmodells," 47th Annual Conference, Weihenstephan, Germany, September 26-28, 2007 7592, German Association of Agricultural Economists (GEWISOLA).
    5. Dirksmeyer, W., 2008. "Ist eine Reduzierung des Pflanzenschutzmitteleinsatzes im Freilandgemüsebau möglich? Ergebnisse eines bioökonomischen Simulationsmodells," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 43, March.
    6. Xiaoxue Du & Levan Elbakidze & Liang Lu & R. Garth Taylor, 2022. "Climate Smart Pest Management," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    7. Norwood, F. Bailey & Marra, Michele C., 2003. "Pesticide Productivity: Of Bugs and Biases," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 28(3), pages 1-15, December.
    8. Cobourn, Kelly M. & Burrack, Hannah J. & Goodhue, Rachael E. & Williams, Jeffrey C. & Zalom, Frank G., 2011. "Implications of simultaneity in a physical damage function," Journal of Environmental Economics and Management, Elsevier, vol. 62(2), pages 278-289, September.
    9. Serra, Teresa & Zilberman, David & Goodwin, Barry K. & Featherstone, Allen M., 2005. "Effects of Decoupling on the Average and the Variability of Output," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24601, European Association of Agricultural Economists.
    10. Alfons Oude Lansink & Alain Carpentier, 2001. "Damage Control Productivity: An Input Damage Abatement Approach," Journal of Agricultural Economics, Wiley Blackwell, vol. 52(3), pages 11-22, September.
    11. Elbakidze, Levan & Lu, Liang & Eigenbrode, Sanford, 2011. "Evaluating Vector-Virus-Yield Interactions for Peas and Lentils under Climatic Variability: A Limited Dependent Variable Analysis," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 36(3), pages 1-17.
    12. Young, Douglas L. & Haantuba, Hyde H., 1998. "An Economic Threshold For Tick Control Considering Multiple Damages And Probability-Based Damage Functions," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 23(2), pages 1-11, December.
    13. Grogan, Kelly A. & Chakravarty, Shourish, 2017. "The Feasibility of Area-wide Pest Management under Heterogeneity and Uncertainty: The Case of Citrus Health Management Areas," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259188, Agricultural and Applied Economics Association.
    14. Lichtenberg, Erik, 2002. "Agriculture and the environment," Handbook of Agricultural Economics, in: B. L. Gardner & G. C. Rausser (ed.), Handbook of Agricultural Economics, edition 1, volume 2, chapter 23, pages 1249-1313, Elsevier.
    15. Karagiannis, Giannis & Tsionas, Efthimios & Tzouvelekas, Vangelis, 2005. "Efficiency in Damage Control Inputs: A Stochastic Production Frontier Approach," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24642, European Association of Agricultural Economists.
    16. Lu, Liang & Elbakidze, Levan, 2012. "Application of Comparative Dynamics in Stochastic Invasive Species Management in Agricultural Production," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 125226, Agricultural and Applied Economics Association.
    17. Sims, Charles & Finnoff, David, 2013. "When is a “wait and see” approach to invasive species justified?," Resource and Energy Economics, Elsevier, vol. 35(3), pages 235-255.
    18. Pannell, David J, 1989. "A Model of Wheat Yield Response to Application of Diclofop-Methyl to Control Ryegrass (Lolium Rigidum)," Discussion Papers 232314, University of Western Australia, School of Agricultural and Resource Economics.
    19. Naveed IQBAL & Maqbool Hussain SIAL, 2018. "Semi-parametric analysis of agricultural production under dichotomy of inputs," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 64(8), pages 378-388.
    20. Young, Douglas L. & Smith, Elwin G. & Kwon, Tae-Jin, 2000. "Aggregation Issues In Pest Control Economics: A Bioeconomic Approach," 2000 Annual Meeting, June 29-July 1, 2000, Vancouver, British Columbia 36448, Western Agricultural Economics Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea01:20775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.