IDEAS home Printed from https://ideas.repec.org/a/wly/natres/v44y2020i4p289-310.html
   My bibliography  Save this article

Environmental pollution, hydropower and nuclear energy generation before and after catastrophe: Bathtub‐Weibull curve and MS‐VECM methods

Author

Listed:
  • Melike E. Bildirici

Abstract

In this paper, the life span of hydro and nuclear energy generations and the relationship between hydro and nuclear energy generations, environmental pollution, and economic growth were investigated for Japan covering the period of 1960–2018 by employing the Bathtub‐Weibull curve and Markov switching‐vector error correcting (MSVEC) method, respectively. According to the Bathtub‐Weibull curve analysis, a rising failure rate for nuclear energy was found, indicating that the life of nuclear energy has expired, but a decreasing failure rate for hydroelectric energy has been detected. Then two different MSVEC models were used. The MSVEC method, unlike traditional approaches, determines the relationship between variables under different regimes. The results of MSVEC methods indicate three important points. First, regime‐dependent asymmetry and regime changes are crucial for policy recommendations. Second, the shocks to hydropower and nuclear energy generations cause temporary deviations from the long‐run growth path in both regimes. Lastly, the increase in hydropower generation leads to a decrease in environmental pollution and an increase in GDP, and an increase in nuclear power generation increases pollution and growth in both regimes.

Suggested Citation

  • Melike E. Bildirici, 2020. "Environmental pollution, hydropower and nuclear energy generation before and after catastrophe: Bathtub‐Weibull curve and MS‐VECM methods," Natural Resources Forum, Blackwell Publishing, vol. 44(4), pages 289-310, November.
  • Handle: RePEc:wly:natres:v:44:y:2020:i:4:p:289-310
    DOI: 10.1111/1477-8947.12194
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1477-8947.12194
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1477-8947.12194?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Erol, Umit & Yu, Eden S. H., 1987. "Time series analysis of the causal relationships between U.S. energy and employment," Resources and Energy, Elsevier, vol. 9(1), pages 75-89, June.
    2. Kapetanios, George & Shin, Yongcheol & Snell, Andy, 2003. "Testing for a unit root in the nonlinear STAR framework," Journal of Econometrics, Elsevier, vol. 112(2), pages 359-379, February.
    3. Danish & Bin Zhang & Zhaohua Wang & Bo Wang, 2018. "Energy production, economic growth and CO2 emission: evidence from Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(1), pages 27-50, January.
    4. Johansen, Soren & Juselius, Katarina, 1990. "Maximum Likelihood Estimation and Inference on Cointegration--With Applications to the Demand for Money," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 52(2), pages 169-210, May.
    5. Yoo, Seung-Hoon & Kim, Yeonbae, 2006. "Electricity generation and economic growth in Indonesia," Energy, Elsevier, vol. 31(14), pages 2890-2899.
    6. Krolzig, H.-M. & Toro, J., 1999. "A New Approach to the Analysis of Shocks and the Cycle in a Model of Output and Employment," Economics Working Papers eco99/30, European University Institute.
    7. Krolzig, Hans-Martin & Marcellino, Massimiliano & Mizon, Grayham E., 2000. "A Markov-switching vector equilibrium correction model of the UK labour market," Discussion Paper Series In Economics And Econometrics 0105, Economics Division, School of Social Sciences, University of Southampton.
    8. Zhang, Ming & Liu, Xiao & Wang, Wenwen & Zhou, Min, 2013. "Decomposition analysis of CO2 emissions from electricity generation in China," Energy Policy, Elsevier, vol. 52(C), pages 159-165.
    9. Hans-Martin Krolzig & Juan Toro, 2004. "Classical and modern business cycle measurement: The European case," Spanish Economic Review, Springer;Spanish Economic Association, vol. 7(1), pages 1-21, January.
    10. Wolde-Rufael, Yemane & Menyah, Kojo, 2010. "Nuclear energy consumption and economic growth in nine developed countries," Energy Economics, Elsevier, vol. 32(3), pages 550-556, May.
    11. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    12. Issa Ibrahim Berchin & Jéssica Garcia & Mauri Luiz Heerdt & Angélica de Quevedo Moreira & Ana Clara Medeiros Silveira & José Baltazar Salgueirinho Osório de Andrade Guerra, 2015. "Energy production and sustainability: A study of Belo Monte hydroelectric power plant," Natural Resources Forum, Blackwell Publishing, vol. 0(3-4), pages 224-237, August.
    13. Vivoda, Vlado, 2010. "Evaluating energy security in the Asia-Pacific region: A novel methodological approach," Energy Policy, Elsevier, vol. 38(9), pages 5258-5263, September.
    14. Zeb, Raheel & Salar, Laleena & Awan, Usama & Zaman, Khalid & Shahbaz, Muhammad, 2014. "Causal links between renewable energy, environmental degradation and economic growth in selected SAARC countries: Progress towards green economy," Renewable Energy, Elsevier, vol. 71(C), pages 123-132.
    15. Massimiliano Marcellino & Grayham E. Mizon & Hans-Martin Krolzig, 2002. "A Markov-switching vector equilibrium correction model of the UK labour market," Empirical Economics, Springer, vol. 27(2), pages 233-254.
    16. Zeshan, Muhammad, 2013. "Finding the cointegration and causal linkages between the electricity production and economic growth in Pakistan," Economic Modelling, Elsevier, vol. 31(C), pages 344-350.
    17. Solarin, Sakiru Adebola & Ozturk, Ilhan, 2015. "On the causal dynamics between hydroelectricity consumption and economic growth in Latin America countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1857-1868.
    18. Yoo, Seung-Hoon & Ku, Se-Ju, 2009. "Causal relationship between nuclear energy consumption and economic growth: A multi-country analysis," Energy Policy, Elsevier, vol. 37(5), pages 1905-1913, May.
    19. Sadorsky, Perry, 2009. "Renewable energy consumption and income in emerging economies," Energy Policy, Elsevier, vol. 37(10), pages 4021-4028, October.
    20. Zhang, Qi & Ishihara, Keiichi N. & Mclellan, Benjamin C. & Tezuka, Tetsuo, 2012. "Scenario analysis on future electricity supply and demand in Japan," Energy, Elsevier, vol. 38(1), pages 376-385.
    21. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    22. Hans-Martin Krolzig & Michael P. Clements, 2002. "Can oil shocks explain asymmetries in the US Business Cycle?," Empirical Economics, Springer, vol. 27(2), pages 185-204.
    23. Lee, Chien-Chiang & Chiu, Yi-Bin, 2011. "Nuclear energy consumption, oil prices, and economic growth: Evidence from highly industrialized countries," Energy Economics, Elsevier, vol. 33(2), pages 236-248, March.
    24. Takanori Ida & Kayo Murakami & Makoto Tanaka, 2015. "Electricity demand response in Japan:Experimental evidence from a residential photovoltaic generation system," Discussion papers e-15-006, Graduate School of Economics Project Center, Kyoto University.
    25. Issa Ibrahim Berchin & Jéssica Garcia & Mauri Luiz Heerdt & Angélica de Quevedo Moreira & Ana Clara Medeiros da Silveira & José Baltazar Salgueirinho Osório de Andrade Guerra, 2015. "Energy production and sustainability: A study of Belo Monte hydroelectric power plant," Natural Resources Forum, Blackwell Publishing, vol. 39(3-4), pages 224-237, August.
    26. Akarca, Ali T. & Long, Thomas II, 1979. "Energy and employment: a time-series analysis of the causal relationship," Resources and Energy, Elsevier, vol. 2(2-3), pages 151-162.
    27. Ghosh, Sajal, 2009. "Electricity supply, employment and real GDP in India: evidence from cointegration and Granger-causality tests," Energy Policy, Elsevier, vol. 37(8), pages 2926-2929, August.
    28. Johansen, Søren & Juselius, Katarina, 1992. "Testing structural hypotheses in a multivariate cointegration analysis of the PPP and the UIP for UK," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 211-244.
    29. Menegaki, Angeliki N. & Tsagarakis, Konstantinos P., 2015. "Rich enough to go renewable, but too early to leave fossil energy?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1465-1477.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Melike Bildirici & Fazıl Kayıkçı & Özgür Ömer Ersin, 2023. "Industry 4.0 and Renewable Energy Production Nexus: An Empirical Investigation of G20 Countries with Panel Quantile Method," Sustainability, MDPI, vol. 15(18), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.
    2. Sofien, Tiba & Omri, Anis, 2016. "Literature survey on the relationships between energy variables, environment and economic growth," MPRA Paper 82555, University Library of Munich, Germany, revised 14 Sep 2016.
    3. Shahbaz, Muhammad & Solarin, Sakiru Adebola & Hammoudeh, Shawkat & Shahzad, Syed Jawad Hussain, 2017. "Bounds testing approach to analyzing the environment Kuznets curve hypothesis with structural beaks: The role of biomass energy consumption in the United States," Energy Economics, Elsevier, vol. 68(C), pages 548-565.
    4. Shahbaz, Muhammad & Solarin, Sakiru Adebola & Hammoudeh, Shawkat & Shahzad, Syed Jawad Hussain, 2017. "Bounds Testing Approach to Analyzing the Environment Kuznets Curve Hypothesis: The Role of Biomass Energy Consumption in the United States with Structural Breaks," MPRA Paper 81840, University Library of Munich, Germany, revised 07 Oct 2017.
    5. Naser, Hanan, 2015. "Analysing the long-run relationship among oil market, nuclear energy consumption, and economic growth: An evidence from emerging economies," Energy, Elsevier, vol. 89(C), pages 421-434.
    6. Omri, Anis, 2014. "An international literature survey on energy-economic growth nexus: Evidence from country-specific studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 951-959.
    7. Man-Keun Kim & Kangil Lee, 2015. "Dynamic Interactions between Carbon and Energy Prices in the U.S. Regional Greenhouse Gas Initiative," International Journal of Energy Economics and Policy, Econjournals, vol. 5(2), pages 494-501.
    8. Hanan Naser, 2015. "Can Nuclear Energy Stimulates Economic Growth? Evidence from Highly Industrialised Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 164-173.
    9. Hasanov, Fakhri J. & Shannak, Sa'd, 2020. "Electricity incentives for agriculture in Saudi Arabia. Is that relevant to remove them?," Energy Policy, Elsevier, vol. 144(C).
    10. Kyophilavong, Phouphet & Shahbaz, Muhammad & Kim, Byoungki & OH, Jeong-Soo, 2017. "A note on the electricity-growth nexus in Lao PDR," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1251-1260.
    11. Troster, Victor & Shahbaz, Muhammad & Uddin, Gazi Salah, 2018. "Renewable energy, oil prices, and economic activity: A Granger-causality in quantiles analysis," Energy Economics, Elsevier, vol. 70(C), pages 440-452.
    12. Bölük, Gülden & Mert, Mehmet, 2015. "The renewable energy, growth and environmental Kuznets curve in Turkey: An ARDL approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 587-595.
    13. Masih, Abul M. M. & Masih, Rumi, 1997. "On the temporal causal relationship between energy consumption, real income, and prices: Some new evidence from Asian-energy dependent NICs Based on a multivariate cointegration/vector error-correctio," Journal of Policy Modeling, Elsevier, vol. 19(4), pages 417-440, August.
    14. Jaganath Behera, 2015. "Examined the Energy-Led Growth Hypothesis in India: Evidence from Time Series Analysis," Energy Economics Letters, Asian Economic and Social Society, vol. 2(4), pages 46-56, December.
    15. M. T. Alguacil & V. Orts, 2003. "Inward Foreign Direct Investment and Imports in Spain," International Economic Journal, Taylor & Francis Journals, vol. 17(3), pages 19-38.
    16. Levent KORAP, 2008. "Exchange Rate Determination Of Tl/Us$:A Co-Integration Approach," Istanbul University Econometrics and Statistics e-Journal, Department of Econometrics, Faculty of Economics, Istanbul University, vol. 7(1), pages 24-50, May.
    17. Pao, Hsiao-Tien & Fu, Hsin-Chia, 2013. "The causal relationship between energy resources and economic growth in Brazil," Energy Policy, Elsevier, vol. 61(C), pages 793-801.
    18. Pedro Hugo Clavijo Cortes, 2017. "Balance comercial y volatilidad del tipo de cambio nominal: Un estudio de series de tiempo para Colombia," Revista Economía y Región, Universidad Tecnológica de Bolívar, vol. 11(1), pages 37-58, June.
    19. Erdal Demirhan & Banu Demirhan, 2015. "The Dynamic Effect of ExchangeRate Volatility on Turkish Exports: Parsimonious Error-Correction Model Approach," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 62(4), pages 429-451, September.
    20. Usman Qamar Sheikh & Muhammad Zafar Iqbal & Hafiz Khalil Ahmad, 2016. "The Impact of Foreign Aid, Energy Production and Human Capital on Income Inequality: A Case Study of Pakistan," Bulletin of Business and Economics (BBE), Research Foundation for Humanity (RFH), vol. 5(1), pages 1-9, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:natres:v:44:y:2020:i:4:p:289-310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1477-8947 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.