IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v41y2022i3p633-652.html
   My bibliography  Save this article

Forecasting Bitcoin volatility: A new insight from the threshold regression model

Author

Listed:
  • Yaojie Zhang
  • Mengxi He
  • Danyan Wen
  • Yudong Wang

Abstract

Asset returns, especially negative returns, represent the leverage effect and are found to be informative for forecasting financial market volatility. The purpose of this paper is to dig out more useful information in Bitcoin returns when we predict Bitcoin volatility. We use the threshold regression model to differentiate positive and negative returns. The threshold regression results suggest that not only a decrease in normal returns but also an increase in extremely positive returns would lead to an increase in future Bitcoin volatility. To further capture and address the leverage effect of large positive returns in the Bitcoin market, we propose a model switching method. We empirically demonstrate the significant predictive ability of large positive returns when forecasting Bitcoin volatility both in‐ and out‐of‐sample. And, our findings still hold after considering long‐horizon forecasts, additional leverage effects, jump components, and a wide series of extensions and robustness tests. In an asset allocation exercise, the proposed volatility forecasting models, which highlight the predictive ability of large positive returns, can generate larger economic gains.

Suggested Citation

  • Yaojie Zhang & Mengxi He & Danyan Wen & Yudong Wang, 2022. "Forecasting Bitcoin volatility: A new insight from the threshold regression model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 633-652, April.
  • Handle: RePEc:wly:jforec:v:41:y:2022:i:3:p:633-652
    DOI: 10.1002/for.2822
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2822
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2822?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    2. Liu, Jing & Ma, Feng & Yang, Ke & Zhang, Yaojie, 2018. "Forecasting the oil futures price volatility: Large jumps and small jumps," Energy Economics, Elsevier, vol. 72(C), pages 321-330.
    3. Yu, Miao, 2019. "Forecasting Bitcoin volatility: The role of leverage effect and uncertainty," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
    4. Corsi, Fulvio & Pirino, Davide & Renò, Roberto, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Journal of Econometrics, Elsevier, vol. 159(2), pages 276-288, December.
    5. Hansen, Bruce E., 1999. "Threshold effects in non-dynamic panels: Estimation, testing, and inference," Journal of Econometrics, Elsevier, vol. 93(2), pages 345-368, December.
    6. Cipollini, Fabrizio & Gallo, Giampiero M. & Otranto, Edoardo, 2021. "Realized volatility forecasting: Robustness to measurement errors," International Journal of Forecasting, Elsevier, vol. 37(1), pages 44-57.
    7. Dai, Zhifeng & Zhu, Huan, 2020. "Stock return predictability from a mixed model perspective," Pacific-Basin Finance Journal, Elsevier, vol. 60(C).
    8. Zhang, Yaojie & Ma, Feng & Wang, Yudong, 2019. "Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 97-117.
    9. Wei, Yu & Liang, Chao & Li, Yan & Zhang, Xunhui & Wei, Guiwu, 2020. "Can CBOE gold and silver implied volatility help to forecast gold futures volatility in China? Evidence based on HAR and Ridge regression models," Finance Research Letters, Elsevier, vol. 35(C).
    10. Andrew J. Patton & Kevin Sheppard, 2015. "Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility," The Review of Economics and Statistics, MIT Press, vol. 97(3), pages 683-697, July.
    11. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    12. Haugom, Erik & Langeland, Henrik & Molnár, Peter & Westgaard, Sjur, 2014. "Forecasting volatility of the U.S. oil market," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 1-14.
    13. Fulvio Corsi & Roberto Renò, 2012. "Discrete-Time Volatility Forecasting With Persistent Leverage Effect and the Link With Continuous-Time Volatility Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 368-380, January.
    14. Adekoya, Oluwasegun B. & Oliyide, Johnson A. & Oduyemi, Gabriel O., 2021. "How COVID-19 upturns the hedging potentials of gold against oil and stock markets risks: Nonlinear evidences through threshold regression and markov-regime switching models," Resources Policy, Elsevier, vol. 70(C).
    15. Eduardo Rossi & Dean Fantazzini, 2015. "Long Memory and Periodicity in Intraday Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 13(4), pages 922-961.
    16. Manabu Asai & Michael McAleer & Marcelo C. Medeiros, 2012. "Asymmetry and Long Memory in Volatility Modeling," Journal of Financial Econometrics, Oxford University Press, vol. 10(3), pages 495-512, June.
    17. Zhang, Dayong & Hu, Min & Ji, Qiang, 2020. "Financial markets under the global pandemic of COVID-19," Finance Research Letters, Elsevier, vol. 36(C).
    18. Ardia, David & Bluteau, Keven & Rüede, Maxime, 2019. "Regime changes in Bitcoin GARCH volatility dynamics," Finance Research Letters, Elsevier, vol. 29(C), pages 266-271.
    19. repec:hal:journl:peer-00741630 is not listed on IDEAS
    20. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    21. Matteo Bonato & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2020. "Investor Happiness and Predictability of the Realized Volatility of Oil Price," Sustainability, MDPI, vol. 12(10), pages 1-11, May.
    22. Bekaert, Geert & Hoerova, Marie, 2014. "The VIX, the variance premium and stock market volatility," Journal of Econometrics, Elsevier, vol. 183(2), pages 181-192.
    23. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    24. Ma, Feng & Wahab, M.I.M. & Huang, Dengshi & Xu, Weiju, 2017. "Forecasting the realized volatility of the oil futures market: A regime switching approach," Energy Economics, Elsevier, vol. 67(C), pages 136-145.
    25. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    26. Tan, Shay-Kee & Ng, Kok-Haur & Chan, Jennifer So-Kuen & Mohamed, Ibrahim, 2019. "Quantile range-based volatility measure for modelling and forecasting volatility using high frequency data," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 537-551.
    27. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise," Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
    28. Bruce E. Hansen, 2000. "Sample Splitting and Threshold Estimation," Econometrica, Econometric Society, vol. 68(3), pages 575-604, May.
    29. Andersen, Torben G. & Bollerslev, Tim & Meddahi, Nour, 2011. "Realized volatility forecasting and market microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 220-234, January.
    30. Bai, Lan & Wei, Yu & Wei, Guiwu & Li, Xiafei & Zhang, Songyun, 2021. "Infectious disease pandemic and permanent volatility of international stock markets: A long-term perspective," Finance Research Letters, Elsevier, vol. 40(C).
    31. Kang, Sang Hoon & Yoon, Seong-Min, 2013. "Modeling and forecasting the volatility of petroleum futures prices," Energy Economics, Elsevier, vol. 36(C), pages 354-362.
    32. Xilong Chen & Eric Ghysels, 2011. "News--Good or Bad--and Its Impact on Volatility Predictions over Multiple Horizons," The Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 46-81, October.
    33. Asai, Manabu & Gupta, Rangan & McAleer, Michael, 2020. "Forecasting volatility and co-volatility of crude oil and gold futures: Effects of leverage, jumps, spillovers, and geopolitical risks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 933-948.
    34. Andrew Detzel & Hong Liu & Jack Strauss & Guofu Zhou & Yingzi Zhu, 2021. "Learning and predictability via technical analysis: Evidence from bitcoin and stocks with hard‐to‐value fundamentals," Financial Management, Financial Management Association International, vol. 50(1), pages 107-137, March.
    35. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    36. Busch, Thomas & Christensen, Bent Jesper & Nielsen, Morten Ørregaard, 2011. "The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets," Journal of Econometrics, Elsevier, vol. 160(1), pages 48-57, January.
    37. Yang, Cai & Gong, Xu & Zhang, Hongwei, 2019. "Volatility forecasting of crude oil futures: The role of investor sentiment and leverage effect," Resources Policy, Elsevier, vol. 61(C), pages 548-563.
    38. Barbara Rossi & Atsushi Inoue, 2012. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
    39. Wilms, Ines & Rombouts, Jeroen & Croux, Christophe, 2021. "Multivariate volatility forecasts for stock market indices," International Journal of Forecasting, Elsevier, vol. 37(2), pages 484-499.
    40. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    41. Hung, Jui-Cheng & Liu, Hung-Chun & Yang, J. Jimmy, 2020. "Improving the realized GARCH’s volatility forecast for Bitcoin with jump-robust estimators," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    42. Yu Wei & Lan Bai & Kun Yang & Guiwu Wei, 2021. "Are industry‐level indicators more helpful to forecast industrial stock volatility? Evidence from Chinese manufacturing purchasing managers index," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(1), pages 17-39, January.
    43. Dehua Shen & Andrew Urquhart & Pengfei Wang, 2020. "Forecasting the volatility of Bitcoin: The importance of jumps and structural breaks," European Financial Management, European Financial Management Association, vol. 26(5), pages 1294-1323, November.
    44. Dai, Zhifeng & Zhou, Huiting & Kang, Jie & Wen, Fenghua, 2021. "The skewness of oil price returns and equity premium predictability," Energy Economics, Elsevier, vol. 94(C).
    45. Ma, Feng & Wahab, M.I.M. & Zhang, Yaojie, 2019. "Forecasting the U.S. stock volatility: An aligned jump index from G7 stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 54(C), pages 132-146.
    46. Bouri, Elie & Azzi, Georges & Dyhrberg, Anne Haubo, 2017. "On the return-volatility relationship in the Bitcoin market around the price crash of 2013," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 11, pages 1-16.
    47. Chortareas, Georgios & Jiang, Ying & Nankervis, John. C., 2011. "Forecasting exchange rate volatility using high-frequency data: Is the euro different?," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1089-1107, October.
    48. Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
    49. Jying-Nan Wang & Hung-Chun Liu & Shu-Mei Chiang & Yuan-Teng Hsu, 2019. "On the predictive power of ARJI volatility forecasts for Bitcoin," Applied Economics, Taylor & Francis Journals, vol. 51(44), pages 4849-4855, September.
    50. Hidalgo, Javier & Lee, Jungyoon & Seo, Myung Hwan, 2019. "Robust inference for threshold regression models," Journal of Econometrics, Elsevier, vol. 210(2), pages 291-309.
    51. Sévi, Benoît, 2014. "Forecasting the volatility of crude oil futures using intraday data," European Journal of Operational Research, Elsevier, vol. 235(3), pages 643-659.
    52. Demirer, Riza & Gupta, Rangan & Pierdzioch, Christian & Shahzad, Syed Jawad Hussain, 2020. "The predictive power of oil price shocks on realized volatility of oil: A note," Resources Policy, Elsevier, vol. 69(C).
    53. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    54. Root, Thomas H. & Lien, Donald, 2003. "Can modeling the natural gas futures market as a threshold cointegrated system improve hedging and forecasting performance?," International Review of Financial Analysis, Elsevier, vol. 12(2), pages 117-133.
    55. Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
    56. Qu, Hui & Duan, Qingling & Niu, Mengyi, 2018. "Modeling the volatility of realized volatility to improve volatility forecasts in electricity markets," Energy Economics, Elsevier, vol. 74(C), pages 767-776.
    57. Jeffrey Chu & Stephen Chan & Saralees Nadarajah & Joerg Osterrieder, 2017. "GARCH Modelling of Cryptocurrencies," JRFM, MDPI, vol. 10(4), pages 1-15, October.
    58. Liu, Guangqiang & Wang, Yan & Chen, Xiaodan & Zhang, Yifeng & Shang, Yue, 2020. "Forecasting volatility of the Chinese stock markets using TVP HAR-type models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    59. Dai, Zhifeng & Kang, Jie & Wen, Fenghua, 2021. "Predicting stock returns: A risk measurement perspective," International Review of Financial Analysis, Elsevier, vol. 74(C).
    60. Zhang, Yaojie & Ma, Feng & Wei, Yu, 2019. "Out-of-sample prediction of the oil futures market volatility: A comparison of new and traditional combination approaches," Energy Economics, Elsevier, vol. 81(C), pages 1109-1120.
    61. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
    62. Wang, Yudong & Ma, Feng & Wei, Yu & Wu, Chongfeng, 2016. "Forecasting realized volatility in a changing world: A dynamic model averaging approach," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 136-149.
    63. Chou, Ray Yeutien, 2005. "Forecasting Financial Volatilities with Extreme Values: The Conditional Autoregressive Range (CARR) Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 561-582, June.
    64. Zhang, Yaojie & Ma, Feng & Liao, Yin, 2020. "Forecasting global equity market volatilities," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1454-1475.
    65. Walther, Thomas & Klein, Tony & Bouri, Elie, 2019. "Exogenous drivers of Bitcoin and Cryptocurrency volatility – A mixed data sampling approach to forecasting," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 63(C).
    66. Köchling, Gerrit & Schmidtke, Philipp & Posch, Peter N., 2020. "Volatility forecasting accuracy for Bitcoin," Economics Letters, Elsevier, vol. 191(C).
    67. Zhu, Xuehong & Zhang, Hongwei & Zhong, Meirui, 2017. "Volatility forecasting using high frequency data: The role of after-hours information and leverage effects," Resources Policy, Elsevier, vol. 54(C), pages 58-70.
    68. Al-Yahyaee, Khamis Hamed & Mensi, Walid & Al-Jarrah, Idries Mohammad Wanas & Hamdi, Atef & Kang, Sang Hoon, 2019. "Volatility forecasting, downside risk, and diversification benefits of Bitcoin and oil and international commodity markets: A comparative analysis with yellow metal," The North American Journal of Economics and Finance, Elsevier, vol. 49(C), pages 104-120.
    69. Rapach, David E. & Wohar, Mark E., 2006. "The out-of-sample forecasting performance of nonlinear models of real exchange rate behavior," International Journal of Forecasting, Elsevier, vol. 22(2), pages 341-361.
    70. Moralles, Herick Fernando & Moreno, Rosina, 2020. "FDI productivity spillovers and absorptive capacity in Brazilian firms: A threshold regression analysis," International Review of Economics & Finance, Elsevier, vol. 70(C), pages 257-272.
    71. Zhang, Yaojie & Wei, Yu & Zhang, Yi & Jin, Daxiang, 2019. "Forecasting oil price volatility: Forecast combination versus shrinkage method," Energy Economics, Elsevier, vol. 80(C), pages 423-433.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiqian Wang & Feng Ma & Elie Bouri & Yangli Guo, 2023. "Which factors drive Bitcoin volatility: Macroeconomic, technical, or both?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 970-988, July.
    2. He, Mengxi & Wang, Yudong & Zeng, Qing & Zhang, Yaojie, 2023. "Forecasting aggregate stock market volatility with industry volatilities: The role of spillover index," Research in International Business and Finance, Elsevier, vol. 65(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danyan Wen & Mengxi He & Yaojie Zhang & Yudong Wang, 2022. "Forecasting realized volatility of Chinese stock market: A simple but efficient truncated approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 230-251, March.
    2. Yi, Yongsheng & He, Mengxi & Zhang, Yaojie, 2022. "Out-of-sample prediction of Bitcoin realized volatility: Do other cryptocurrencies help?," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    3. Zhang, Yaojie & Ma, Feng & Wei, Yu, 2019. "Out-of-sample prediction of the oil futures market volatility: A comparison of new and traditional combination approaches," Energy Economics, Elsevier, vol. 81(C), pages 1109-1120.
    4. Zhang, Yaojie & Lei, Likun & Wei, Yu, 2020. "Forecasting the Chinese stock market volatility with international market volatilities: The role of regime switching," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    5. Yaojie Zhang & Yudong Wang & Feng Ma & Yu Wei, 2022. "To jump or not to jump: momentum of jumps in crude oil price volatility prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-31, December.
    6. Yaojie Zhang & Yudong Wang & Feng Ma, 2021. "Forecasting US stock market volatility: How to use international volatility information," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 733-768, August.
    7. Ma, Feng & Wahab, M.I.M. & Zhang, Yaojie, 2019. "Forecasting the U.S. stock volatility: An aligned jump index from G7 stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 54(C), pages 132-146.
    8. Feng Ma & Chao Liang & Yuanhui Ma & M.I.M. Wahab, 2020. "Cryptocurrency volatility forecasting: A Markov regime‐switching MIDAS approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1277-1290, December.
    9. Jin, Daxiang & He, Mengxi & Xing, Lu & Zhang, Yaojie, 2022. "Forecasting China's crude oil futures volatility: How to dig out the information of other energy futures volatilities?," Resources Policy, Elsevier, vol. 78(C).
    10. Zhang, Yaojie & Wei, Yu & Zhang, Yi & Jin, Daxiang, 2019. "Forecasting oil price volatility: Forecast combination versus shrinkage method," Energy Economics, Elsevier, vol. 80(C), pages 423-433.
    11. Chen, Wang & Ma, Feng & Wei, Yu & Liu, Jing, 2020. "Forecasting oil price volatility using high-frequency data: New evidence," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 1-12.
    12. Ma, Feng & Zhang, Yaojie & Huang, Dengshi & Lai, Xiaodong, 2018. "Forecasting oil futures price volatility: New evidence from realized range-based volatility," Energy Economics, Elsevier, vol. 75(C), pages 400-409.
    13. Niu, Zibo & Liu, Yuanyuan & Gao, Wang & Zhang, Hongwei, 2021. "The role of coronavirus news in the volatility forecasting of crude oil futures markets: Evidence from China," Resources Policy, Elsevier, vol. 73(C).
    14. Xiafei Li & Dongxin Li & Xuhui Zhang & Guiwu Wei & Lan Bai & Yu Wei, 2021. "Forecasting regular and extreme gold price volatility: The roles of asymmetry, extreme event, and jump," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1501-1523, December.
    15. Chen, Yixiang & Ma, Feng & Zhang, Yaojie, 2019. "Good, bad cojumps and volatility forecasting: New evidence from crude oil and the U.S. stock markets," Energy Economics, Elsevier, vol. 81(C), pages 52-62.
    16. Chao Liang & Yu Wei & Yaojie Zhang, 2020. "Is implied volatility more informative for forecasting realized volatility: An international perspective," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1253-1276, December.
    17. Liu, Jing & Ma, Feng & Yang, Ke & Zhang, Yaojie, 2018. "Forecasting the oil futures price volatility: Large jumps and small jumps," Energy Economics, Elsevier, vol. 72(C), pages 321-330.
    18. He, Mengxi & Wang, Yudong & Zeng, Qing & Zhang, Yaojie, 2023. "Forecasting aggregate stock market volatility with industry volatilities: The role of spillover index," Research in International Business and Finance, Elsevier, vol. 65(C).
    19. Ma, Feng & Li, Yu & Liu, Li & Zhang, Yaojie, 2018. "Are low-frequency data really uninformative? A forecasting combination perspective," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 92-108.
    20. Li, Zhao-Chen & Xie, Chi & Zeng, Zhi-Jian & Wang, Gang-Jin & Zhang, Ting, 2023. "Forecasting global stock market volatilities in an uncertain world," International Review of Financial Analysis, Elsevier, vol. 85(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:41:y:2022:i:3:p:633-652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.