IDEAS home Printed from https://ideas.repec.org/a/wly/ajagec/v105y2023i2p546-575.html
   My bibliography  Save this article

Incorporating historical weather information in crop insurance rating

Author

Listed:
  • Yong Liu
  • A. Ford Ramsey

Abstract

Crop insurance programs rely on conditional predictive distributions of loss random variables (e.g., yield, revenue, loss costs, etc.) to determine probabilities and magnitudes of loss. The loss variables may be related to stochastic variables that are not known at the time the policy is priced. Such is the case for weather; weather is stochastic, realizations are not known when the crop insurance policy is sold, and there is often additional historical information on weather relative to the loss variable itself. We provide a Bayesian methodology for incorporating historical weather information in crop insurance rating. We apply the method in empirical applications to county‐level U.S. corn yields and loss cost ratios in the Midwest. The historical weather‐conditioned distributions differ from those based on shorter samples. In the yield distribution setting, additional temporal weather information leads to economic gains relative to other rating approaches; the magnitude of these gains increases with the amount of historical weather information included in the analysis.

Suggested Citation

  • Yong Liu & A. Ford Ramsey, 2023. "Incorporating historical weather information in crop insurance rating," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(2), pages 546-575, March.
  • Handle: RePEc:wly:ajagec:v:105:y:2023:i:2:p:546-575
    DOI: 10.1111/ajae.12329
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/ajae.12329
    Download Restriction: no

    File URL: https://libkey.io/10.1111/ajae.12329?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Racine, Jeffrey S. & Ker, Alan P., 2006. "Rating Crop Insurance Policies with Efficient Nonparametric Estimators that Admit Mixed Data Types," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 31(1), pages 1-13, April.
    2. Barry Barnett, 2014. "Multiple-peril crop insurance: successes and challenges," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 74(2), pages 200-216, July.
    3. Bruce J. Sherrick & Fabio C. Zanini & Gary D. Schnitkey & Scott H. Irwin, 2004. "Crop Insurance Valuation under Alternative Yield Distributions," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(2), pages 406-419.
    4. Jesse B. Tack & David Ubilava, 2015. "Climate and agricultural risk: measuring the effect of ENSO on U.S. crop insurance," Agricultural Economics, International Association of Agricultural Economists, vol. 46(2), pages 245-257, March.
    5. Denis Nadolnyak & Dmitry Vedenov & James Novak, 2008. "Information Value of Climate-Based Yield Forecasts in Selecting Optimal Crop Insurance Coverage," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(5), pages 1248-1255.
    6. Wenbin Wu & Ximing Wu & Yu Yvette Zhang & David Leatham, 2021. "Gaussian process modeling of nonstationary crop yield distributions with applications to crop insurance," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 81(5), pages 767-783, February.
    7. Jesse Tack & Ardian Harri & Keith Coble, 2012. "More than Mean Effects: Modeling the Effect of Climate on the Higher Order Moments of Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(5), pages 1037-1054.
    8. Barry K. Goodwin, 2008. "Climate Variability Implications for Agricultural Crop Production and Risk Management: Discussion," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(5), pages 1263-1264.
    9. Robert Finger, 2010. "Revisiting the Evaluation of Robust Regression Techniques for Crop Yield Data Detrending," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 92(1), pages 205-211.
    10. Alan P. Ker & Tor N. Tolhurst & Yong Liu, 2016. "Bayesian Estimation of Possibly Similar Yield Densities: Implications for Rating Crop Insurance Contracts," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(2), pages 360-382.
    11. Ker, Alan P. & McGowan, Pat, 2000. "Weather-Based Adverse Selection And The U.S. Crop Insurance Program: The Private Insurance Company Perspective," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 25(2), pages 1-25, December.
    12. Barry Barnett, 2014. "Multiple-peril crop insurance: successes and challenges," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 74(2), pages 200-216, July.
    13. Ardian Harri & Cumhur Erdem & Keith H. Coble & Thomas O. Knight, 2009. "Crop Yield Distributions: A Reconciliation of Previous Research and Statistical Tests for Normality," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 31(1), pages 163-182.
    14. Griffiths, William E. & Newton, Lisa S. & O'Donnell, Christopher J., 2010. "Predictive densities for models with stochastic regressors and inequality constraints: Forecasting local-area wheat yield," International Journal of Forecasting, Elsevier, vol. 26(2), pages 397-412, April.
    15. Zhiwei Shen & Martin Odening & Ostap Okhrin, 2016. "Can expert knowledge compensate for data scarcity in crop insurance pricing?," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 43(2), pages 237-269.
    16. Zhu, Ying & Goodwin, Barry K. & Ghosh, Sujit K., 2011. "Modeling Yield Risk Under Technological Change: Dynamic Yield Distributions and the U.S. Crop Insurance Program," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 36(1), pages 1-19, April.
    17. John R. Knight & C.F. Sirmans & Alan E. Gelfand & Sujit K. Ghosh, 1998. "Analyzing Real Estate Data Problems Using the Gibbs Sampler," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 26(3), pages 469-492, September.
    18. Vincent H. Smith & Barry K. Goodwin, 1995. "The Economics of Crop Insurance and Disaster Aid," Books, American Enterprise Institute, number 53374, September.
    19. Olivier Mahul & Charles J. Stutley, 2010. "Government Support to Agricultural Insurance : Challenges and Options for Developing Countries," World Bank Publications - Books, The World Bank Group, number 2432, December.
    20. Yong Liu & Alan P. Ker, 2021. "Simultaneous borrowing of information across space and time for pricing insurance contracts: An application to rating crop insurance policies," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(1), pages 231-257, March.
    21. Eunchun Park & B Wade Brorsen & Ardian Harri, 2019. "Using Bayesian Kriging for Spatial Smoothing in Crop Insurance Rating," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 101(1), pages 330-351.
    22. Alan P Ker & Tor N Tolhurst, 2019. "On the Treatment of Heteroscedasticity in Crop Yield Data," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 101(4), pages 1247-1261.
    23. Cepeda-Cuervo Edilberto & Garrido Liliana, 2015. "Bayesian beta regression models with joint mean and dispersion modeling," Monte Carlo Methods and Applications, De Gruyter, vol. 21(1), pages 49-58, March.
    24. Robert Finger, 2013. "Investigating the performance of different estimation techniques for crop yield data analysis in crop insurance applications," Agricultural Economics, International Association of Agricultural Economists, vol. 44(2), pages 217-230, March.
    25. Papke, Leslie E & Wooldridge, Jeffrey M, 1996. "Econometric Methods for Fractional Response Variables with an Application to 401(K) Plan Participation Rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 619-632, Nov.-Dec..
    26. Cho, Whoi & Brorsen, B. Wade, 2021. "Design of the Rainfall Index Crop Insurance Program for Pasture, Rangeland, and Forage," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 46(1), January.
    27. Alan P. Ker & Keith Coble, 2003. "Modeling Conditional Yield Densities," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(2), pages 291-304.
    28. Liu, Yong & Ker, Alan P., 2020. "When Less Is More: On the Use of Historical Yield Data with Application to Rating Area Crop Insurance Contracts," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 52(2), pages 194-203, May.
    29. Richards, Timothy J. & Mischen, Pamela, 1998. "The Demand for Specialty-Crop Insurance: Adverse Selection and Inefficiency," Journal of Agribusiness, Agricultural Economics Association of Georgia, vol. 16(1), pages 1-25.
    30. Ramsey, A. Ford & Tack, Jesse B. & Balota, Maria, 2021. "Double or Nothing: Impacts of Warming on Crop Quantity, Quality, and Revenue," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 47(1), January.
    31. Vitor Ozaki & Barry Goodwin & Ricardo Shirota, 2008. "Parametric and nonparametric statistical modelling of crop yield: implications for pricing crop insurance contracts," Applied Economics, Taylor & Francis Journals, vol. 40(9), pages 1151-1164.
    32. Rejesus, Roderick M. & Coble, Keith H. & Miller, Mary France & Boyles, Ryan & Goodwin, Barry K & Knight, Thomas O., 2015. "Accounting for Weather Probabilities in Crop Insurance Rating," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 40(2), pages 1-19, May.
    33. Barry K. Goodwin & Alan P. Ker, 1998. "Nonparametric Estimation of Crop Yield Distributions: Implications for Rating Group-Risk Crop Insurance Contracts," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(1), pages 139-153.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kuangyu Wen, 2023. "A semiparametric spatio‐temporal model of crop yield trend and its implication to insurance rating," Agricultural Economics, International Association of Agricultural Economists, vol. 54(5), pages 662-673, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A Ford Ramsey, 2020. "Probability Distributions of Crop Yields: A Bayesian Spatial Quantile Regression Approach," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(1), pages 220-239, January.
    2. Yong Liu & Alan P. Ker, 2021. "Simultaneous borrowing of information across space and time for pricing insurance contracts: An application to rating crop insurance policies," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(1), pages 231-257, March.
    3. A. Ford Ramsey & Barry K. Goodwin, 2019. "Value-at-Risk and Models of Dependence in the U.S. Federal Crop Insurance Program," JRFM, MDPI, vol. 12(2), pages 1-21, April.
    4. Jesse B. Tack & David Ubilava, 2015. "Climate and agricultural risk: measuring the effect of ENSO on U.S. crop insurance," Agricultural Economics, International Association of Agricultural Economists, vol. 46(2), pages 245-257, March.
    5. Tor N. Tolhurst & Alan P. Ker, 2015. "On Technological Change in Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(1), pages 137-158.
    6. Liu, Y. & Ker, A., 2018. "Is There Too Much History in Historical Yield Data," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277293, International Association of Agricultural Economists.
    7. Ozaki, Vitor & Campos, Rogério, 2017. "Reduzindo a Incerteza no Mercado de Seguros: Uma Abordagem via Informações de Sensoriamento Remoto e Atuária," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 71(4), December.
    8. Kuangyu Wen, 2023. "A semiparametric spatio‐temporal model of crop yield trend and its implication to insurance rating," Agricultural Economics, International Association of Agricultural Economists, vol. 54(5), pages 662-673, September.
    9. Fujin Yi & Mengfei Zhou & Yu Yvette Zhang, 2020. "Value of Incorporating ENSO Forecast in Crop Insurance Programs," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(2), pages 439-457, March.
    10. Ker, Alan. P & Tolhurst, Tor & Liu, Yong, 2015. "Rating Area-yield Crop Insurance Contracts Using Bayesian Model Averaging and Mixture Models," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205211, Agricultural and Applied Economics Association.
    11. Jesse Tack & David Ubilava, 2013. "The effect of El Niño Southern Oscillation on U.S. corn production and downside risk," Climatic Change, Springer, vol. 121(4), pages 689-700, December.
    12. Arata, Linda & Fabrizi, Enrico & Sckokai, Paolo, 2020. "A worldwide analysis of trend in crop yields and yield variability: Evidence from FAO data," Economic Modelling, Elsevier, vol. 90(C), pages 190-208.
    13. Xiaotao Li & Jinzheng Ren & Beibei Niu & Haiping Wu, 2020. "Grain Area Yield Index Insurance Ratemaking Based on Time–Space Risk Adjustment in China," Sustainability, MDPI, vol. 12(6), pages 1-15, March.
    14. Christopher N. Boyer & B. Wade Brorsen & Emmanuel Tumusiime, 2015. "Modeling skewness with the linear stochastic plateau model to determine optimal nitrogen rates," Agricultural Economics, International Association of Agricultural Economists, vol. 46(1), pages 1-10, January.
    15. Agarwal, Sandip Kumar, 2017. "Subjective beliefs and decision making under uncertainty in the field," ISU General Staff Papers 201701010800006248, Iowa State University, Department of Economics.
    16. Ghahremanzadeh, Mohammad & Mohammadrezaei, Rassul & Dashti, Ghader & Ainollahi, Moharram, 2018. "Designing a whole-farm revenue insurance for agricultural crops in Zanjan province of Iran," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 17(02), January.
    17. Shen, Zhiwei, 2016. "Adaptive local parametric estimation of crop yields: implication for crop insurance ratemaking," 156th Seminar, October 4, 2016, Wageningen, The Netherlands 249984, European Association of Agricultural Economists.
    18. Park, Eunchun & Harri, Ardian & Coble, Keith H., 2022. "Estimating Crop Yield Densities for Counties with Missing Data," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 47(3), September.
    19. Ramsey, A., 2018. "Conditional Distributions of Crop Yields: A Bayesian Approach for Characterizing Technological Change," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277253, International Association of Agricultural Economists.
    20. Belasco, Eric J., 2020. "WAEA Presidential Address: Moving Agricultural Policy Forward: Or, There and Back Again," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 45(3), September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:ajagec:v:105:y:2023:i:2:p:546-575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1467-8276 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.