IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v12y2019i2p65-d223072.html
   My bibliography  Save this article

Value-at-Risk and Models of Dependence in the U.S. Federal Crop Insurance Program

Author

Listed:
  • A. Ford Ramsey

    (Department of Agricultural and Applied Economics, Virginia Tech, Blacksburg, VA 24061, USA)

  • Barry K. Goodwin

    (Department of Economics and Department of Agricultural and Resource Economics, North Carolina State University, Raleigh, NC 27607, USA)

Abstract

The federal crop insurance program covered more than 110 billion dollars in total liability in 2018. The program consists of policies across a wide range of crops, plans, and locations. Weather and other latent variables induce dependence among components of the portfolio. Computing value-at-risk (VaR) is important because the Standard Reinsurance Agreement (SRA) allows for a portion of the risk to be transferred to the federal government. Further, the international reinsurance industry is extensively involved in risk sharing arrangements with U.S. crop insurers. VaR is an important measure of the risk of an insurance portfolio. In this context, VaR is typically expressed in terms of probable maximum loss (PML) or as a return period, whereby a loss of certain magnitude is expected to return within a given period of time. Determining bounds on VaR is complicated by the non-homogeneous nature of crop insurance portfolios. We consider several different scenarios for the marginal distributions of losses and provide sharp bounds on VaR using a rearrangement algorithm. Our results are related to alternative measures of portfolio risks based on multivariate distribution functions and alternative copula specifications.

Suggested Citation

  • A. Ford Ramsey & Barry K. Goodwin, 2019. "Value-at-Risk and Models of Dependence in the U.S. Federal Crop Insurance Program," JRFM, MDPI, vol. 12(2), pages 1-21, April.
  • Handle: RePEc:gam:jjrfmx:v:12:y:2019:i:2:p:65-:d:223072
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/12/2/65/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/12/2/65/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ostap Okhrin & Martin Odening & Wei Xu, 2013. "Systemic Weather Risk and Crop Insurance: The Case of China," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(2), pages 351-372, June.
    2. Bruce J. Sherrick & Fabio C. Zanini & Gary D. Schnitkey & Scott H. Irwin, 2004. "Crop Insurance Valuation under Alternative Yield Distributions," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(2), pages 406-419.
    3. Nikoloulopoulos, Aristidis K. & Joe, Harry & Li, Haijun, 2012. "Vine copulas with asymmetric tail dependence and applications to financial return data," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3659-3673.
    4. Ker, Alan P. & McGowan, Pat, 2000. "Weather-Based Adverse Selection And The U.S. Crop Insurance Program: The Private Insurance Company Perspective," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 25(2), pages 1-25, December.
    5. Mainik, Georg & Embrechts, Paul, 2013. "Diversification in heavy-tailed portfolios: properties and pitfalls," Annals of Actuarial Science, Cambridge University Press, vol. 7(1), pages 26-45, March.
    6. Okhrin, Ostap & Okhrin, Yarema & Schmid, Wolfgang, 2013. "On the structure and estimation of hierarchical Archimedean copulas," Journal of Econometrics, Elsevier, vol. 173(2), pages 189-204.
    7. Dermot J. Hayes & Sergio H. Lence & Chuck Mason, 2003. "Could the government manage its exposure to crop reinsurance risk?," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 63(2), pages 127-142, November.
    8. Olivier Mahul & Charles J. Stutley, 2010. "Government Support to Agricultural Insurance : Challenges and Options for Developing Countries," World Bank Publications - Books, The World Bank Group, number 2432, December.
    9. Yang, Lu & Cai, Xiao Jing & Li, Mengling & Hamori, Shigeyuki, 2015. "Modeling dependence structures among international stock markets: Evidence from hierarchical Archimedean copulas," Economic Modelling, Elsevier, vol. 51(C), pages 308-314.
    10. Gallagher, Paul W., 1986. "U. S. Corn Yield Capacity and Probability: Estimation and Forecasting with Non-Symmetric Disturbances," Staff General Research Papers Archive 10780, Iowa State University, Department of Economics.
    11. Embrechts, Paul & Puccetti, Giovanni & Rüschendorf, Ludger, 2013. "Model uncertainty and VaR aggregation," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 2750-2764.
    12. Alan P. Ker & Keith Coble, 2003. "Modeling Conditional Yield Densities," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(2), pages 291-304.
    13. Lysa Porth & Milton Boyd & Jeffrey Pai, 2016. "Reducing Risk Through Pooling and Selective Reinsurance Using Simulated Annealing: An Example from Crop Insurance," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 41(2), pages 163-191, September.
    14. Tamakoshi, Go & Hamori, Shigeyuki, 2014. "The conditional dependence structure of insurance sector credit default swap indices," The North American Journal of Economics and Finance, Elsevier, vol. 30(C), pages 122-132.
    15. Tor N. Tolhurst & Alan P. Ker, 2015. "On Technological Change in Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(1), pages 137-158.
    16. Barry K. Goodwin & Alan P. Ker, 1998. "Nonparametric Estimation of Crop Yield Distributions: Implications for Rating Group-Risk Crop Insurance Contracts," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(1), pages 139-153.
    17. Alan P. Ker & Tor N. Tolhurst & Yong Liu, 2016. "Bayesian Estimation of Possibly Similar Yield Densities: Implications for Rating Crop Insurance Contracts," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(2), pages 360-382.
    18. H. Holly Wang & Hao Zhang, 2003. "On the Possibility of a Private Crop Insurance Market: A Spatial Statistics Approach," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 70(1), pages 111-124, March.
    19. Martin Odening & Zhiwei Shen, 2014. "Challenges of insuring weather risk in agriculture," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 74(2), pages 188-199, July.
    20. Zhu, Ying & Goodwin, Barry K. & Ghosh, Sujit K., 2011. "Modeling Yield Risk Under Technological Change: Dynamic Yield Distributions and the U.S. Crop Insurance Program," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 36(1), pages 1-19, April.
    21. Eunchun Park & B Wade Brorsen & Ardian Harri, 2019. "Using Bayesian Kriging for Spatial Smoothing in Crop Insurance Rating," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 101(1), pages 330-351.
    22. Ashley Elaine Hungerford & Barry Goodwin, 2014. "Big assumptions for small samples in crop insurance," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 74(4), pages 477-491, October.
    23. Puccetti, Giovanni, 2013. "Sharp bounds on the expected shortfall for a sum of dependent random variables," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1227-1232.
    24. Jesse Tack & David Ubilava, 2013. "The effect of El Niño Southern Oscillation on U.S. corn production and downside risk," Climatic Change, Springer, vol. 121(4), pages 689-700, December.
    25. Lysa Porth & Milton Boyd & Jeffrey Pai, 2016. "Reducing Risk Through Pooling and Selective Reinsurance Using Simulated Annealing: An Example from Crop Insurance," The Geneva Papers on Risk and Insurance Theory, Springer;International Association for the Study of Insurance Economics (The Geneva Association), vol. 41(2), pages 163-191, September.
    26. Frees, Edward W. & Wang, Ping, 2006. "Copula credibility for aggregate loss models," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 360-373, April.
    27. Ramsey, A. Ford & Goodwin, Barry K. & Ghosh, Sujit K., 2019. "How High the Hedge: Relationships between Prices and Yields in the Federal Crop Insurance Program," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 44(2), May.
    28. Vitor Ozaki & Ralph Silva, 2009. "Bayesian ratemaking procedure of crop insurance contracts with skewed distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(4), pages 443-452.
    29. Clifford M. Hurvich & Jeffrey S. Simonoff & Chih‐Ling Tsai, 1998. "Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 271-293.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yifei & Goodwin, Barry K., 2020. "Implications of U.S. Crop Insurance -- A Perspective from Copulas," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304343, Agricultural and Applied Economics Association.
    2. Marius Hofert, 2020. "Implementing the Rearrangement Algorithm: An Example from Computational Risk Management," Risks, MDPI, vol. 8(2), pages 1-28, May.
    3. Wang, Yuanrong & Aste, Tomaso, 2023. "Dynamic portfolio optimization with inverse covariance clustering," LSE Research Online Documents on Economics 117701, London School of Economics and Political Science, LSE Library.
    4. David Edmund Allen & Elisa Luciano, 2019. "Risk Analysis and Portfolio Modelling," JRFM, MDPI, vol. 12(4), pages 1-4, September.
    5. Park, Eunchun & Harri, Ardian & Coble, Keith H., 2022. "Estimating Crop Yield Densities for Counties with Missing Data," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 47(3), September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Liu & Alan P. Ker, 2021. "Simultaneous borrowing of information across space and time for pricing insurance contracts: An application to rating crop insurance policies," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(1), pages 231-257, March.
    2. Yong Liu & A. Ford Ramsey, 2023. "Incorporating historical weather information in crop insurance rating," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(2), pages 546-575, March.
    3. A Ford Ramsey, 2020. "Probability Distributions of Crop Yields: A Bayesian Spatial Quantile Regression Approach," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(1), pages 220-239, January.
    4. Ker, Alan. P & Tolhurst, Tor & Liu, Yong, 2015. "Rating Area-yield Crop Insurance Contracts Using Bayesian Model Averaging and Mixture Models," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205211, Agricultural and Applied Economics Association.
    5. Jesse B. Tack & David Ubilava, 2015. "Climate and agricultural risk: measuring the effect of ENSO on U.S. crop insurance," Agricultural Economics, International Association of Agricultural Economists, vol. 46(2), pages 245-257, March.
    6. Liu, Y. & Ker, A., 2018. "Is There Too Much History in Historical Yield Data," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277293, International Association of Agricultural Economists.
    7. Xiaotao Li & Jinzheng Ren & Beibei Niu & Haiping Wu, 2020. "Grain Area Yield Index Insurance Ratemaking Based on Time–Space Risk Adjustment in China," Sustainability, MDPI, vol. 12(6), pages 1-15, March.
    8. Ozaki, Vitor & Campos, Rogério, 2017. "Reduzindo a Incerteza no Mercado de Seguros: Uma Abordagem via Informações de Sensoriamento Remoto e Atuária," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 71(4), December.
    9. Shen, Zhiwei, 2016. "Adaptive local parametric estimation of crop yields: implication for crop insurance ratemaking," 156th Seminar, October 4, 2016, Wageningen, The Netherlands 249984, European Association of Agricultural Economists.
    10. Kuangyu Wen & Ximing Wu & David J. Leatham, 2021. "Spatially Smoothed Kernel Densities with Application to Crop Yield Distributions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 349-366, September.
    11. Agarwal, Sandip Kumar, 2017. "Subjective beliefs and decision making under uncertainty in the field," ISU General Staff Papers 201701010800006248, Iowa State University, Department of Economics.
    12. Ghahremanzadeh, Mohammad & Mohammadrezaei, Rassul & Dashti, Ghader & Ainollahi, Moharram, 2018. "Designing a whole-farm revenue insurance for agricultural crops in Zanjan province of Iran," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 17(02), January.
    13. Hao, Jianqiang & Bathke, Arne & Skees, Jerry R., 2005. "Modeling the Tail Distribution and Ratemaking: An Application of Extreme Value Theory," 2005 Annual meeting, July 24-27, Providence, RI 19190, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    14. Tor N. Tolhurst & Alan P. Ker, 2015. "On Technological Change in Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(1), pages 137-158.
    15. Kuangyu Wen, 2023. "A semiparametric spatio‐temporal model of crop yield trend and its implication to insurance rating," Agricultural Economics, International Association of Agricultural Economists, vol. 54(5), pages 662-673, September.
    16. Xuche Gong & David A. Hennessy & Hongli Feng, 2023. "Systemic risk, relative subsidy rates, and area yield insurance choice," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(3), pages 888-913, May.
    17. Chen, Shu-Ling & Miranda, Mario J., 2006. "Modeling Yield Distribution In High Risk Counties: Application To Texas Upland Cotton," 2006 Annual meeting, July 23-26, Long Beach, CA 21392, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    18. Jesse Tack & David Ubilava, 2013. "The effect of El Niño Southern Oscillation on U.S. corn production and downside risk," Climatic Change, Springer, vol. 121(4), pages 689-700, December.
    19. Park, Eunchun & Brorsen, B. Wade & Harri, Ardian, 2016. "Using Bayesian Spatial Smoothing and Extreme Value Theory to Develop Area-Yield Crop Insurance Rating," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235754, Agricultural and Applied Economics Association.
    20. Jesse Tack & Ardian Harri & Keith Coble, 2012. "More than Mean Effects: Modeling the Effect of Climate on the Higher Order Moments of Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(5), pages 1037-1054.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:12:y:2019:i:2:p:65-:d:223072. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.