IDEAS home Printed from https://ideas.repec.org/a/url/izvest/v24y2023i1p81-103.html
   My bibliography  Save this article

The relationship between robots and labour productivity: Does business scale matter?

Author

Listed:
  • Daria A. Starovatova

    (HSE University, Saint Petersburg, Russia)

Abstract

Scholarly literature on the economic consequences of robotisation at the microeconomic level often does not take into account the pronounced digital gap between small and medium-sized businesses and large ones. In this regard, theoretical and real estimates may differ for companies of different sizes. The article studies the relationship between robotisation and labour productivity in the Russian industry in the context of size groups of companies. Methodologically, the study relies on the theory of the firm and economic theories explaining the essence of labour productivity and methods for evaluating it. The research analyses the data about 725 Russian industrial enterprises for 2017 using the methods of regression modeling. The data was obtained in the course of the fundamental research programme at the HSE University. According to the results, only small and medium-sized enterprises have a significant and reliable relationship between the introduction of robots and labour productivity. Probably due to the complexity of business processes, large businesses need deeper and more elaborate robotisation to gain labour productivity benefits. The calculations also demonstrate a negative relationship between exports and labour productivity in large companies, which contradicts the ‘classical’ ideas about the impact of export activities on the efficiency indicators. This may indicate that the high labour productivity of a considerable part of large Russian enterprises proceeds from their monopoly position in domestic markets, while formally less productive companies, which do not occupy dominant positions, appear to be competitive and motivated enough to enter foreign markets. The findings can be useful for the leadership of enterprises, especially that of SMEs, for the managerial decision-making in terms of increasing productivity, in particular, through robotisation of production.

Suggested Citation

  • Daria A. Starovatova, 2023. "The relationship between robots and labour productivity: Does business scale matter?," Journal of New Economy, Ural State University of Economics, vol. 24(1), pages 81-103, April.
  • Handle: RePEc:url:izvest:v:24:y:2023:i:1:p:81-103
    DOI: 10.29141/2658-5081-2023-24-1-4
    as

    Download full text from publisher

    File URL: https://jne.usue.ru/images/download/98/4.pdf
    Download Restriction: no

    File URL: https://jne.usue.ru/en/issues-2023/1273
    Download Restriction: no

    File URL: https://libkey.io/10.29141/2658-5081-2023-24-1-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. , & Stiebale, Joel & Woessner, Nicole, 2020. "Robots and the rise of European superstar firms," CEPR Discussion Papers 15080, C.E.P.R. Discussion Papers.
    2. Georg Graetz & Guy Michaels, 2018. "Robots at Work," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 753-768, December.
    3. Chad Syverson, 2011. "What Determines Productivity?," Journal of Economic Literature, American Economic Association, vol. 49(2), pages 326-365, June.
    4. Davide Dottori, 2021. "Robots and employment: evidence from Italy," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 38(2), pages 739-795, July.
    5. Alessandra Bonfiglioli & Rosario Crinò & Harald Fadinger & Gino Gancia, 2020. "Robot Imports and Firm-Level Outcomes," CRC TR 224 Discussion Paper Series crctr224_2020_243, University of Bonn and University of Mannheim, Germany.
    6. Michael Koch & Ilya Manuylov & Marcel Smolka, 2021. "Robots and Firms," The Economic Journal, Royal Economic Society, vol. 131(638), pages 2553-2584.
    7. Daron Acemoglu & Pascual Restrepo, 2020. "Robots and Jobs: Evidence from US Labor Markets," Journal of Political Economy, University of Chicago Press, vol. 128(6), pages 2188-2244.
    8. Berg, Andrew & Buffie, Edward F. & Zanna, Luis-Felipe, 2018. "Should we fear the robot revolution? (The correct answer is yes)," Journal of Monetary Economics, Elsevier, vol. 97(C), pages 117-148.
    9. de Vries, Gaaitzen J. & Gentile, Elisabetta & Miroudot, Sébastien & Wacker, Konstantin M., 2020. "The rise of robots and the fall of routine jobs," Labour Economics, Elsevier, vol. 66(C).
    10. Ballestar, María Teresa & Díaz-Chao, Ángel & Sainz, Jorge & Torrent-Sellens, Joan, 2020. "Knowledge, robots and productivity in SMEs: Explaining the second digital wave," Journal of Business Research, Elsevier, vol. 108(C), pages 119-131.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klump, Rainer & Jurkat, Anne & Schneider, Florian, 2021. "Tracking the rise of robots: A survey of the IFR database and its applications," MPRA Paper 107909, University Library of Munich, Germany.
    2. Caselli, Mauro & Fracasso, Andrea & Scicchitano, Sergio & Traverso, Silvio & Tundis, Enrico, 2021. "Stop worrying and love the robot: An activity-based approach to assess the impact of robotization on employment dynamics," GLO Discussion Paper Series 802, Global Labor Organization (GLO).
    3. Filippi, Emilia & Bannò, Mariasole & Trento, Sandro, 2023. "Automation technologies and their impact on employment: A review, synthesis and future research agenda," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    4. Michele Fornino & Andrea Manera, 2022. "Automation and the Future of Work: Assessing the Role of Labor Flexibility," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 45, pages 282-321, July.
    5. Caselli, Mauro & Fracasso, Andrea & Marcolin, Arianna & Scicchitano, Sergio, 2021. "The reassuring effect of firms' technological innovations on workers' job insecurity," GLO Discussion Paper Series 938, Global Labor Organization (GLO).
    6. Czarnitzki, Dirk & Fernández, Gastón P. & Rammer, Christian, 2023. "Artificial intelligence and firm-level productivity," Journal of Economic Behavior & Organization, Elsevier, vol. 211(C), pages 188-205.
    7. Davide Antonioli & Alberto Marzucchi & Francesco Rentocchini & Simone Vannuccini, 2022. "Robot Adoption and Innovation Activities (last revised: December 2023)," Munich Papers in Political Economy 21, Munich School of Politics and Public Policy and the School of Management at the Technical University of Munich.
    8. ADACHI Daisuke & KAWAGUCHI Daiji & SAITO Yukiko, 2020. "Robots and Employment: Evidence from Japan, 1978-2017," Discussion papers 20051, Research Institute of Economy, Trade and Industry (RIETI).
    9. Cilekoglu, Akin A. & Moreno, Rosina & Ramos, Raul, 2024. "The impact of robot adoption on global sourcing," Research Policy, Elsevier, vol. 53(3).
    10. Fierro, Luca Eduardo & Caiani, Alessandro & Russo, Alberto, 2022. "Automation, Job Polarisation, and Structural Change," Journal of Economic Behavior & Organization, Elsevier, vol. 200(C), pages 499-535.
    11. Davide Dottori, 2021. "Robots and employment: evidence from Italy," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 38(2), pages 739-795, July.
    12. Lin, Changqing & Xiao, Shengpeng & Yin, Zihui, 2022. "How do industrial robots applications affect the quality upgrade of Chinese export trade?," Telecommunications Policy, Elsevier, vol. 46(10).
    13. Domini, Giacomo & Grazzi, Marco & Moschella, Daniele & Treibich, Tania, 2022. "For whom the bell tolls: The firm-level effects of automation on wage and gender inequality," Research Policy, Elsevier, vol. 51(7).
    14. Wang, En-Ze & Lee, Chien-Chiang & Li, Yaya, 2022. "Assessing the impact of industrial robots on manufacturing energy intensity in 38 countries," Energy Economics, Elsevier, vol. 105(C).
    15. Dario Guarascio & Alessandro Piccirillo & Jelena Reljic, 2024. "Will robot replace workers? Assessing the impact of robots on employment and wages with meta-analysis," LEM Papers Series 2024/03, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    16. Mr. Andrew Berg & Lahcen Bounader & Nikolay Gueorguiev & Hiroaki Miyamoto & Mr. Kenji Moriyama & Ryota Nakatani & Luis-Felipe Zanna, 2021. "For the Benefit of All: Fiscal Policies and Equity-Efficiency Trade-offs in the Age of Automation," IMF Working Papers 2021/187, International Monetary Fund.
    17. Sergio De Nardis & Francesca Parente, 2022. "Technology and task changes in the major EU countries," Contemporary Economic Policy, Western Economic Association International, vol. 40(2), pages 391-413, April.
    18. Genz, Sabrina & Schnabel, Claus, 2021. "Digging into the digital divide: Workers' exposure to digitalization and its consequences for individual employment," Discussion Papers 118, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Labour and Regional Economics.
    19. Gan, Jiawu & Liu, Lihua & Qiao, Gang & Zhang, Qin, 2023. "The role of robot adoption in green innovation: Evidence from China," Economic Modelling, Elsevier, vol. 119(C).
    20. Chen, Chinchih & Frey, Carl Benedikt & Presidente, Giorgio, 2022. "Automation or globalization? The impacts of robots and Chinese imports on jobs in the United Kingdom," Journal of Economic Behavior & Organization, Elsevier, vol. 204(C), pages 528-542.

    More about this item

    Keywords

    labour productivity; growth drivers; robotics; automation; digital gap; robotisation of production;
    All these keywords.

    JEL classification:

    • D22 - Microeconomics - - Production and Organizations - - - Firm Behavior: Empirical Analysis
    • J24 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Human Capital; Skills; Occupational Choice; Labor Productivity
    • O14 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Industrialization; Manufacturing and Service Industries; Choice of Technology

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:url:izvest:v:24:y:2023:i:1:p:81-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Victor Blaginin (email available below). General contact details of provider: https://edirc.repec.org/data/usueeru.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.