IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v30y2016i9d10.1007_s11269-016-1327-5.html
   My bibliography  Save this article

Rapid Screening of Operational Freshwater Availability Using Global Models

Author

Listed:
  • M. W. Straatsma

    (Utrecht University)

  • P. T. M. Vermeulen

    (Deltares)

  • M. J. M. Kuijper

    (Deltares)

  • M. Bonte

    (Shell Global Solutions)

  • F. G. M. Niele

    (Shell Global Solutions)

  • M. F. P. Bierkens

    (Utrecht University
    Deltares)

Abstract

Freshwater shortage already affects large parts of the world, and is expected to increase rapidly over the coming decades as a result of increased water demands and the impacts of climate change. Global-scale water risk or stress maps are available online, but these lack quantitative information on local freshwater availability, rendering them unsuitable for water risk assessment from an operational perspective, i.e. when comparing water availability to a specific quantified water demand (in m3s−1 rather than generic risk indicators). Therefore, our main goal was to develop a rapid screening method to estimate current and future operational freshwater availability using global-scale models. Operational Freshwater Availability (OFWA) was computed using the PCR-GLOBWB global hydrology and water resources model, coupled to a global MODFLOW groundwater model. PCR-GLOBWB was forced with rainfall and temperature fields from the IPSL-CM5A-LR climate model under the RCP6.0 climate scenario, with water demands based on the SSP2 socio-economic scenario. Unique to our study are the downscaling of the coupled PCR-GLOBWB-MODFLOW model to 90 m resolution and the provision of quantitative estimates on long term trends in operational freshwater availability. Our results showed a high, i.e. operationally relevant, accuracy for operational surface water availability, while the uncertainty about operational groundwater availability remained high due to limited availability of subsurface data. With this method, we developed a modelling capacity for rapidly generating scenario-based water availability projections with operational relevance in a rigorous, systematic way, such that it enables like-for-like comparisons. Further refinement is required for accurate estimates of operational groundwater availability.

Suggested Citation

  • M. W. Straatsma & P. T. M. Vermeulen & M. J. M. Kuijper & M. Bonte & F. G. M. Niele & M. F. P. Bierkens, 2016. "Rapid Screening of Operational Freshwater Availability Using Global Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3013-3026, July.
  • Handle: RePEc:spr:waterr:v:30:y:2016:i:9:d:10.1007_s11269-016-1327-5
    DOI: 10.1007/s11269-016-1327-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-016-1327-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-016-1327-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tom Gleeson & Yoshihide Wada & Marc F. P. Bierkens & Ludovicus P. H. van Beek, 2012. "Water balance of global aquifers revealed by groundwater footprint," Nature, Nature, vol. 488(7410), pages 197-200, August.
    2. Animesh Gain & Yoshihide Wada, 2014. "Assessment of Future Water Scarcity at Different Spatial and Temporal Scales of the Brahmaputra River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 999-1012, March.
    3. Detlef Vuuren & Elmar Kriegler & Brian O’Neill & Kristie Ebi & Keywan Riahi & Timothy Carter & Jae Edmonds & Stephane Hallegatte & Tom Kram & Ritu Mathur & Harald Winkler, 2014. "A new scenario framework for Climate Change Research: scenario matrix architecture," Climatic Change, Springer, vol. 122(3), pages 373-386, February.
    4. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    5. Kristie Ebi & Stephane Hallegatte & Tom Kram & Nigel Arnell & Timothy Carter & Jae Edmonds & Elmar Kriegler & Ritu Mathur & Brian O’Neill & Keywan Riahi & Harald Winkler & Detlef Vuuren & Timm Zwickel, 2014. "A new scenario framework for climate change research: background, process, and future directions," Climatic Change, Springer, vol. 122(3), pages 363-372, February.
    6. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    7. O. Idowu & J. Awomeso & O. Martins, 2012. "An Evaluation of Demand for and Supply of Potable Water in an Urban Centre of Abeokuta and Environs, Southwestern Nigeria," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 2109-2121, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana Iglesias & David Santillán & Luis Garrote, 2018. "On the Barriers to Adaption to Less Water under Climate Change: Policy Choices in Mediterranean Countries," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 4819-4832, December.
    2. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    3. Solberg, Birger & Moiseyev, Alex & Hansen, Jon Øvrum & Horn, Svein Jarle & Øverland, Margareth, 2021. "Wood for food: Economic impacts of sustainable use of forest biomass for salmon feed production in Norway," Forest Policy and Economics, Elsevier, vol. 122(C).
    4. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    5. Speers, Ann E. & Besedin, Elena Y. & Palardy, James E. & Moore, Chris, 2016. "Impacts of climate change and ocean acidification on coral reef fisheries: An integrated ecological–economic model," Ecological Economics, Elsevier, vol. 128(C), pages 33-43.
    6. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    7. McManamay, Ryan A. & DeRolph, Christopher R. & Surendran-Nair, Sujithkumar & Allen-Dumas, Melissa, 2019. "Spatially explicit land-energy-water future scenarios for cities: Guiding infrastructure transitions for urban sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 880-900.
    8. Richard Taylor & Ruth Butterfield & Tiago Capela Lourenço & Adis Dzebo & Henrik Carlsen & Richard J. T. Klein, 2020. "Surveying perceptions and practices of high-end climate change," Climatic Change, Springer, vol. 161(1), pages 65-87, July.
    9. Roberto Roson & Richard Damania, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity: an Assessment of Alternative Scenarios," IEFE Working Papers 84, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    10. Phetheet, Jirapat & Hill, Mary C. & Barron, Robert W. & Gray, Benjamin J. & Wu, Hongyu & Amanor-Boadu, Vincent & Heger, Wade & Kisekka, Isaya & Golden, Bill & Rossi, Matthew W., 2021. "Relating agriculture, energy, and water decisions to farm incomes and climate projections using two freeware programs, FEWCalc and DSSAT," Agricultural Systems, Elsevier, vol. 193(C).
    11. Milan Ščasný & Emanuele Massetti & Jan Melichar & Samuel Carrara, 2015. "Quantifying the Ancillary Benefits of the Representative Concentration Pathways on Air Quality in Europe," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 383-415, October.
    12. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    13. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    14. Victor Nechifor & Matthew Winning, 2017. "The impacts of higher CO2 concentrations over global crop production and irrigation water requirements," EcoMod2017 10487, EcoMod.
    15. Dugan, Anna & Mayer, Jakob & Thaller, Annina & Bachner, Gabriel & Steininger, Karl W., 2022. "Developing policy packages for low-carbon passenger transport: A mixed methods analysis of trade-offs and synergies," Ecological Economics, Elsevier, vol. 193(C).
    16. Fabien Cremona & Sirje Vilbaste & Raoul-Marie Couture & Peeter Nõges & Tiina Nõges, 2017. "Is the future of large shallow lakes blue-green? Comparing the response of a catchment-lake model chain to climate predictions," Climatic Change, Springer, vol. 141(2), pages 347-361, March.
    17. Govorukha, Kristina & Mayer, Philip & Rübbelke, Dirk & Vögele, Stefan, 2020. "Economic disruptions in long-term energy scenarios – Implications for designing energy policy," Energy, Elsevier, vol. 212(C).
    18. Sferra, Fabio & Krapp, Mario & Roming, Niklas & Schaeffer, Michiel & Malik, Aman & Hare, Bill & Brecha, Robert, 2019. "Towards optimal 1.5° and 2 °C emission pathways for individual countries: A Finland case study," Energy Policy, Elsevier, vol. 133(C).
    19. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    20. Magalhães Filho, L.N.L. & Roebeling, P.C. & Costa, L.F.C. & de Lima, L.T., 2022. "Ecosystem services values at risk in the Atlantic coastal zone due to sea-level rise and socioeconomic development," Ecosystem Services, Elsevier, vol. 58(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:30:y:2016:i:9:d:10.1007_s11269-016-1327-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.