IDEAS home Printed from https://ideas.repec.org/a/spr/pubtra/v8y2016i2d10.1007_s12469-016-0125-z.html
   My bibliography  Save this article

Determining the best performing benchmarks for transit routes with a multi-objective model: the implementation and a critique of the two-model approach

Author

Listed:
  • Samet Güner

    (Sakarya Üniversitesi, Esentepe Kampüsü, İşletme Fakültesi)

  • Erman Coşkun

    (Sakarya Üniversitesi, Esentepe Kampüsü, İşletme Fakültesi)

Abstract

In addition to their operational efficiency, the service level based performance dimensions of transit systems has begun to attract the attention of several researchers in recent years. The consideration of both operational efficiency and service level performance enables a more comprehensive performance evaluation for bus transit operators. This study aims to investigate the operational efficiency and service level performance of public transportation companies with data envelopment analysis (DEA). However, DEA might assign some highly efficiently operating routes as benchmarks to inefficient ones despite some unsatisfactory service level performance, and vice versa. This benchmarking might help to improve one performance dimension but can result in worsening the other. To overcome this problem, the two-model approach introduced by Shimshak and Lenard (INFOR 45(3):143–151, 2007) is utilized to determine the best performing routes. This approach removes the high operational efficient routes with low service level performance and high service level performers but operationally inefficient routes from the analysis and helps to define best performing benchmarks being able to enhance both operational efficiency and service level performance. At the end of the study, a critique of the two-model approach is presented. This paper makes three contributions to the practice of transit performance evaluation. First, it puts forward the necessity of multi-objectivity for the subunits of transit systems. Second, it demonstrates the applicability of the two-model approach in the transportation industry. And third, it points out that despite the usefulness of the two-model approach to determine the best benchmarks in a multi-objective model, the model suffers to assign input/output goals for inefficient decision making units where input/output variables of distinct objectives are the same or related to each other.

Suggested Citation

  • Samet Güner & Erman Coşkun, 2016. "Determining the best performing benchmarks for transit routes with a multi-objective model: the implementation and a critique of the two-model approach," Public Transport, Springer, vol. 8(2), pages 205-224, September.
  • Handle: RePEc:spr:pubtra:v:8:y:2016:i:2:d:10.1007_s12469-016-0125-z
    DOI: 10.1007/s12469-016-0125-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12469-016-0125-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12469-016-0125-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William W. Cooper & Lawrence M. Seiford & Joe Zhu (ed.), 2011. "Handbook on Data Envelopment Analysis," International Series in Operations Research and Management Science, Springer, number 978-1-4419-6151-8, September.
    2. Karlaftis, Matthew G., 2004. "A DEA approach for evaluating the efficiency and effectiveness of urban transit systems," European Journal of Operational Research, Elsevier, vol. 152(2), pages 354-364, January.
    3. Donthu, Naveen & Hershberger, Edmund K. & Osmonbekov, Talai, 2005. "Benchmarking marketing productivity using data envelopment analysis," Journal of Business Research, Elsevier, vol. 58(11), pages 1474-1482, November.
    4. repec:adr:anecst:y:1999:i:54:p:06 is not listed on IDEAS
    5. De Borger, Bruno & Kerstens, Kristiaan, 1996. "Cost efficiency of Belgian local governments: A comparative analysis of FDH, DEA, and econometric approaches," Regional Science and Urban Economics, Elsevier, vol. 26(2), pages 145-170, April.
    6. Bruno De Borger & Kristiaan Kerstens & Álvaro Costa, 2002. "Public transit performance: What does one learn from frontier studies?," Transport Reviews, Taylor & Francis Journals, vol. 22(1), pages 1-38, January.
    7. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    8. Andreas Soteriou & Stavros A. Zenios, 1999. "Operations, Quality, and Profitability in the Provision of Banking Services," Management Science, INFORMS, vol. 45(9), pages 1221-1238, September.
    9. William W. Cooper & Lawrence M. Seiford & Joe Zhu, 2011. "Data Envelopment Analysis: History, Models, and Interpretations," International Series in Operations Research & Management Science, in: William W. Cooper & Lawrence M. Seiford & Joe Zhu (ed.), Handbook on Data Envelopment Analysis, chapter 0, pages 1-39, Springer.
    10. Kristiaan Kerstens, 1999. "Decomposing Technical Efficiency and Effectiveness of French Urban Transport," Annals of Economics and Statistics, GENES, issue 54, pages 129-155.
    11. Yoshida, Yuichiro & Fujimoto, Hiroyoshi, 2004. "Japanese-airport benchmarking with the DEA and endogenous-weight TFP methods: testing the criticism of overinvestment in Japanese regional airports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 40(6), pages 533-546, November.
    12. John Ruggiero, 2011. "Data Envelopment Analysis," Sports Economics, Management, and Policy, in: Frontiers in Major League Baseball, chapter 0, pages 7-19, Springer.
    13. Sheth, Chintan & Triantis, Konstantinos & Teodorovic, Dusan, 2007. "Performance evaluation of bus routes: A provider and passenger perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(4), pages 453-478, July.
    14. Karlaftis, Matthew G. & Tsamboulas, Dimitrios, 2012. "Efficiency measurement in public transport: Are findings specification sensitive?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(2), pages 392-402.
    15. Chu, Xuehao & Fielding, Gordon J. & Lamar, Bruce W., 1992. "Measuring transit performance using data envelopment analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 26(3), pages 223-230, May.
    16. John Ruggiero, 2011. "Frontiers in Major League Baseball," Sports Economics, Management and Policy, Springer, number 978-1-4419-0831-5, September.
    17. H. David Sherman & George Ladino, 1995. "Managing Bank Productivity Using Data Envelopment Analysis (DEA)," Interfaces, INFORMS, vol. 25(2), pages 60-73, April.
    18. Wade Cook & Moez Hababou & Hans Tuenter, 2000. "Multicomponent Efficiency Measurement and Shared Inputs in Data Envelopment Analysis: An Application to Sales and Service Performance in Bank Branches," Journal of Productivity Analysis, Springer, vol. 14(3), pages 209-224, November.
    19. Karlaftis, Matthew G., 2003. "Investigating transit production and performance: a programming approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(3), pages 225-240, March.
    20. Abagail McWilliams & Annaleena Parhankangas & Jason Coupet & Eric Welch & Darold T. Barnum, 2016. "Strategic Decision Making for the Triple Bottom Line," Business Strategy and the Environment, Wiley Blackwell, vol. 25(3), pages 193-204, March.
    21. H. Sherman & Joe Zhu, 2006. "Benchmarking with quality-adjusted DEA (Q-DEA) to seek lower-cost high-quality service: Evidence from a U.S.bank application," Annals of Operations Research, Springer, vol. 145(1), pages 301-319, July.
    22. Viton, Philip A., 1997. "Technical efficiency in multi-mode bus transit: A production frontier analysis," Transportation Research Part B: Methodological, Elsevier, vol. 31(1), pages 23-39, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samet Güner & Erman Coşkun, 2019. "Estimating the operational and service efficiency of bus transit routes using a non-radial DEA approach," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 249-268, September.
    2. Cinzia Daraio & Marco Diana & Flavia Di Costa & Claudio Leporelli & Giorgio Matteucci & Alberto Nastasi, 2014. "Efficiency and effectiveness in the urban public transport sector: a critical review with directions for future research," DIAG Technical Reports 2014-14, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    3. Di Yao & Liqun Xu & Jinpei Li, 2019. "Evaluating the Performance of Public Transit Systems: A Case Study of Eleven Cities in China," Sustainability, MDPI, vol. 11(13), pages 1-21, June.
    4. Cavaignac, Laurent & Petiot, Romain, 2017. "A quarter century of Data Envelopment Analysis applied to the transport sector: A bibliometric analysis," Socio-Economic Planning Sciences, Elsevier, vol. 57(C), pages 84-96.
    5. Karlaftis, Matthew G. & Tsamboulas, Dimitrios, 2012. "Efficiency measurement in public transport: Are findings specification sensitive?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(2), pages 392-402.
    6. Hassan, Mohammad Nurul & Hawas, Yaser E. & Ahmed, Kamran, 2013. "A multi-dimensional framework for evaluating the transit service performance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 50(C), pages 47-61.
    7. Zhao, Y. & Triantis, K. & Murray-Tuite, P. & Edara, P., 2011. "Performance measurement of a transportation network with a downtown space reservation system: A network-DEA approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1140-1159.
    8. Yao, Di & Xu, Liqun & Li, Jinpei, 2020. "Does technical efficiency play a mediating role between bus facility scale and ridership attraction? Evidence from bus practices in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 77-96.
    9. Merkert, Rico & Mulley, Corinne & Hakim, Md Mahbubul, 2017. "Determinants of bus rapid transit (BRT) system revenue and effectiveness – A global benchmarking exercise," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 75-88.
    10. Zhang, Chunqin & Xiao, Guangnian & Liu, Yong & Yu, Feng, 2018. "The relationship between organizational forms and the comprehensive effectiveness for public transport services in China?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 783-802.
    11. Georgiadis, Georgios & Politis, Ioannis & Papaioannou, Panagiotis, 2014. "Measuring and improving the efficiency and effectiveness of bus public transport systems," Research in Transportation Economics, Elsevier, vol. 48(C), pages 84-91.
    12. Zhang, Chunqin & Juan, Zhicai & Luo, Qingyu & Xiao, Guangnian, 2016. "Performance evaluation of public transit systems using a combined evaluation method," Transport Policy, Elsevier, vol. 45(C), pages 156-167.
    13. Barnum, Darold T. & Karlaftis, Matthew G. & Tandon, Sonali, 2011. "Improving the efficiency of metropolitan area transit by joint analysis of its multiple providers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1160-1176.
    14. Anastasiou Athanasios & Kalligosfyris Charalampos & Kalamara Eleni, 2022. "Assessing the effectiveness of tax administration in macroeconomic stability: evidence from 26 European Countries," Economic Change and Restructuring, Springer, vol. 55(4), pages 2237-2261, November.
    15. Matthias Klumpp & Dominic Loske, 2021. "Sustainability and Resilience Revisited: Impact of Information Technology Disruptions on Empirical Retail Logistics Efficiency," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    16. Chiou, Yu-Chiun & Lan, Lawrence W. & Yen, Barbara T.H., 2012. "Route-based data envelopment analysis models," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 415-425.
    17. Sampaio, Breno Ramos & Neto, Oswaldo Lima & Sampaio, Yony, 2008. "Efficiency analysis of public transport systems: Lessons for institutional planning," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(3), pages 445-454, March.
    18. Venkatesh, Anand & Kushwaha, Shivam, 2018. "Short and long-run cost efficiency in Indian public bus companies using Data Envelopment Analysis," Socio-Economic Planning Sciences, Elsevier, vol. 61(C), pages 29-36.
    19. Feng Li & Qingyuan Zhu & Liang Liang, 2019. "A new data envelopment analysis based approach for fixed cost allocation," Annals of Operations Research, Springer, vol. 274(1), pages 347-372, March.
    20. Anand Venkatesh & Shivam Kushwaha, 2017. "Measuring technical efficiency of passenger bus companies in India: a non-radial data envelopment analysis approach," OPSEARCH, Springer;Operational Research Society of India, vol. 54(4), pages 706-723, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pubtra:v:8:y:2016:i:2:d:10.1007_s12469-016-0125-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.