IDEAS home Printed from https://ideas.repec.org/a/spr/pubtra/v10y2018i1d10.1007_s12469-017-0173-z.html
   My bibliography  Save this article

Comparison between ad-hoc demand responsive and conventional transit: a simulation study

Author

Listed:
  • Zahra Navidi

    (The University of Melbourne)

  • Nicole Ronald

    (Swinburne University of Technology)

  • Stephan Winter

    (The University of Melbourne)

Abstract

Considering the sprawl of cities, conventional public transport with fixed route and fixed schedule becomes less efficient and desirable every day. However, emerging technologies in computation and communication are facilitating more adaptive types of public transport systems, such as demand responsive transport that operates according to real-time demand. It is crucial to study the feasibility and advantages of these novel systems before implementation to prevent failure and financial loss. In this work, an extensive comparison of demand responsive transport and conventional public transport is provided by incorporating a dynamic routing algorithm into an agent-based traffic simulation. The results show that replacing conventional public transport with demand responsive transport will improve the mobility by decreasing the perceived travel time by passengers without any extra cost under certain circumstances. The simulation results are confirmed for different forms of networks, including a real-world network proving the potential of demand responsive transport to solve the challenge of underutilised conventional public transport in suburban areas with low transport demand.

Suggested Citation

  • Zahra Navidi & Nicole Ronald & Stephan Winter, 2018. "Comparison between ad-hoc demand responsive and conventional transit: a simulation study," Public Transport, Springer, vol. 10(1), pages 147-167, May.
  • Handle: RePEc:spr:pubtra:v:10:y:2018:i:1:d:10.1007_s12469-017-0173-z
    DOI: 10.1007/s12469-017-0173-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12469-017-0173-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12469-017-0173-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fu, Liping, 2002. "A simulation model for evaluating advanced dial-a-ride paratransit systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(4), pages 291-307, May.
    2. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    3. Luis Ferreira & Phil Charles & Clara Tether, 2007. "Evaluating Flexible Transport Solutions," Transportation Planning and Technology, Taylor & Francis Journals, vol. 30(2-3), pages 249-269.
    4. Quadrifoglio, Luca & Li, Xiugang, 2009. "A methodology to derive the critical demand density for designing and operating feeder transit services," Transportation Research Part B: Methodological, Elsevier, vol. 43(10), pages 922-935, December.
    5. Hensher, David A. & Stopher, Peter & Bullock, Philip, 2003. "Service quality--developing a service quality index in the provision of commercial bus contracts," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(6), pages 499-517, July.
    6. Beirão, Gabriela & Sarsfield Cabral, J.A., 2007. "Understanding attitudes towards public transport and private car: A qualitative study," Transport Policy, Elsevier, vol. 14(6), pages 478-489, November.
    7. Marco Diana & Luca Quadrifoglio & Cristina Pronello, 2009. "A methodology for comparing distances traveled by performance-equivalent fixed-route and demand responsive transit services," Transportation Planning and Technology, Taylor & Francis Journals, vol. 32(4), pages 377-399, June.
    8. David Charypar & Kai Nagel, 2005. "Generating complete all-day activity plans with genetic algorithms," Transportation, Springer, vol. 32(4), pages 369-397, July.
    9. Arnott, Richard & de Palma, Andre & Lindsey, Robin, 1993. "A Structural Model of Peak-Period Congestion: A Traffic Bottleneck with Elastic Demand," American Economic Review, American Economic Association, vol. 83(1), pages 161-179, March.
    10. Jean-François Cordeau & Gilbert Laporte, 2007. "The dial-a-ride problem: models and algorithms," Annals of Operations Research, Springer, vol. 153(1), pages 29-46, September.
    11. Quadrifoglio, Luca & Dessouky, Maged M. & Ordóñez, Fernando, 2008. "A simulation study of demand responsive transit system design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(4), pages 718-737, May.
    12. Berbeglia, Gerardo & Cordeau, Jean-François & Laporte, Gilbert, 2010. "Dynamic pickup and delivery problems," European Journal of Operational Research, Elsevier, vol. 202(1), pages 8-15, April.
    13. Brake, Jenny & Mulley, Corinne & Nelson, John D. & Wright, Steve, 2007. "Key lessons learned from recent experience with Flexible Transport Services," Transport Policy, Elsevier, vol. 14(6), pages 458-466, November.
    14. Nelson, John D. & Wright, Steve & Masson, Brian & Ambrosino, Giorgio & Naniopoulos, Aristotelis, 2010. "Recent developments in Flexible Transport Services," Research in Transportation Economics, Elsevier, vol. 29(1), pages 243-248.
    15. Wardman, Mark, 2004. "Public transport values of time," Transport Policy, Elsevier, vol. 11(4), pages 363-377, October.
    16. Palmer, Kurt & Dessouky, Maged & Abdelmaguid, Tamer, 2004. "Impacts of management practices and advanced technologies on demand responsive transit systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(7), pages 495-509, August.
    17. Palmer, Kurt & Dessouky, Maged & Zhou, Zhiqiang, 2008. "Factors influencing productivity and operating cost of demand responsive transit," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(3), pages 503-523, March.
    18. Horn, M. E. T., 2002. "Multi-modal and demand-responsive passenger transport systems: a modelling framework with embedded control systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(2), pages 167-188, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    2. Franco, Patrizia & Johnston, Ryan & McCormick, Ecaterina, 2020. "Demand responsive transport: Generation of activity patterns from mobile phone network data to support the operation of new mobility services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 244-266.
    3. Hyunmyung Kim & Jaeheon Choi & Sungjin Cho & Feng Liu & Hyungmin Jin & Suhwan Lim & Dongjun Kim & Jun Lee & Chang-Hyeon Joh, 2022. "Identifying Different Sources of the Benefit: Simulation of DRT Operation in the Heartland and Hinterland Regions," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    4. Kersting, Moritz & Kallbach, Felina & Schlüter, Jan Christian, 2021. "For the young and old alike – An analysis of the determinants of seniors’ satisfaction with the true door-to-door DRT system EcoBus in rural Germany," Journal of Transport Geography, Elsevier, vol. 96(C).
    5. Alsaleh, Nael & Farooq, Bilal, 2021. "Interpretable data-driven demand modelling for on-demand transit services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 1-22.
    6. MELIS, Lissa & SÖRENSEN, Kenneth, 2021. "The real-time on-demand bus routing problem: What is the cost of dynamic requests?," Working Papers 2021003, University of Antwerp, Faculty of Business and Economics.
    7. Sörensen, Leif & Bossert, Andreas & Jokinen, Jani-Pekka & Schlüter, Jan, 2021. "How much flexibility does rural public transport need? – Implications from a fully flexible DRT system," Transport Policy, Elsevier, vol. 100(C), pages 5-20.
    8. Mittelman, Gur & Kariv, Yaron & Cohen, Yuval & Avineri, Erel, 2022. "Techno-economic analysis of energy supply to personal rapid transit (PRT) systems," Applied Energy, Elsevier, vol. 306(PB).
    9. Babak Mehran & Yongzhe Yang & Sushreeta Mishra, 2020. "Analytical models for comparing operational costs of regular bus and semi-flexible transit services," Public Transport, Springer, vol. 12(1), pages 147-169, March.
    10. Jaâfar Berrada & Alexis Poulhès, 2021. "Economic and socioeconomic assessment of replacing conventional public transit with demand responsive transit services in low-to-medium density areas," Post-Print hal-03325200, HAL.
    11. Cavallaro, Federico & Nocera, Silvio, 2023. "Flexible-route integrated passenger–freight transport in rural areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    12. Berrada, Jaâfar & Poulhès, Alexis, 2021. "Economic and socioeconomic assessment of replacing conventional public transit with demand responsive transit services in low-to-medium density areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 317-334.
    13. MELIS, Lissa & QUEIROZ, Michell & SÖRENSEN, kenneth, 2021. "The integrated on-demand bus routing problem," Working Papers 2021004, University of Antwerp, Faculty of Business and Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, Feng & Shen, Jinxing & Zhang, Xuechi & An, Chengchuan, 2015. "Demi-flexible operating policies to promote the performance of public transit in low-demand areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 215-230.
    2. Badia, Hugo & Jenelius, Erik, 2021. "Design and operation of feeder systems in the era of automated and electric buses," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 146-172.
    3. Alan Lee & Martin Savelsbergh, 2017. "An extended demand responsive connector," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 25-50, March.
    4. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    5. Kim, Myungseob (Edward) & Schonfeld, Paul, 2015. "Maximizing net benefits for conventional and flexible bus services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 116-133.
    6. Nicole Ronald & Russell Thompson & Stephan Winter, 2015. "Simulating Demand-responsive Transportation: A Review of Agent-based Approaches," Transport Reviews, Taylor & Francis Journals, vol. 35(4), pages 404-421, July.
    7. Dikas, G. & Minis, I., 2014. "Scheduled paratransit transport systems," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 18-34.
    8. Marković, Nikola & Kim, Myungseob (Edward) & Schonfeld, Paul, 2016. "Statistical and machine learning approach for planning dial-a-ride systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 89(C), pages 41-55.
    9. Babak Mehran & Yongzhe Yang & Sushreeta Mishra, 2020. "Analytical models for comparing operational costs of regular bus and semi-flexible transit services," Public Transport, Springer, vol. 12(1), pages 147-169, March.
    10. Chandra, Shailesh & Quadrifoglio, Luca, 2013. "A model for estimating the optimal cycle length of demand responsive feeder transit services," Transportation Research Part B: Methodological, Elsevier, vol. 51(C), pages 1-16.
    11. Yves Molenbruch & Kris Braekers & An Caris, 2017. "Typology and literature review for dial-a-ride problems," Annals of Operations Research, Springer, vol. 259(1), pages 295-325, December.
    12. Jokinen, Jani-Pekka & Sihvola, Teemu & Mladenovic, Milos N., 2019. "Policy lessons from the flexible transport service pilot Kutsuplus in the Helsinki Capital Region," Transport Policy, Elsevier, vol. 76(C), pages 123-133.
    13. Bhoopalam, Anirudh Kishore & Agatz, Niels & Zuidwijk, Rob, 2018. "Planning of truck platoons: A literature review and directions for future research," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 212-228.
    14. repec:hal:wpaper:hal-00827972 is not listed on IDEAS
    15. Stefan Vonolfen & Michael Affenzeller, 2016. "Distribution of waiting time for dynamic pickup and delivery problems," Annals of Operations Research, Springer, vol. 236(2), pages 359-382, January.
    16. Regnier-Coudert, Olivier & McCall, John & Ayodele, Mayowa & Anderson, Steven, 2016. "Truck and trailer scheduling in a real world, dynamic and heterogeneous context," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 389-408.
    17. Mahmood Mahmoodi Nesheli & Avishai (Avi) Ceder & Robin Brissaud, 2017. "Public transport service-quality elements based on real-time operational tactics," Transportation, Springer, vol. 44(5), pages 957-975, September.
    18. Berrada, Jaâfar & Poulhès, Alexis, 2021. "Economic and socioeconomic assessment of replacing conventional public transit with demand responsive transit services in low-to-medium density areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 317-334.
    19. Aslaksen, Ingvild Eide & Svanberg, Elisabeth & Fagerholt, Kjetil & Johnsen, Lennart C. & Meisel, Frank, 2021. "A combined dial-a-ride and fixed schedule ferry service for coastal cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 306-325.
    20. Monchambert, Guillaume & de Palma, André, 2014. "Public transport reliability and commuter strategy," Journal of Urban Economics, Elsevier, vol. 81(C), pages 14-29.
    21. van Engelen, Matti & Cats, Oded & Post, Henk & Aardal, Karen, 2018. "Enhancing flexible transport services with demand-anticipatory insertion heuristics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 110(C), pages 110-121.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pubtra:v:10:y:2018:i:1:d:10.1007_s12469-017-0173-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.