IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v42y2008i4p718-737.html
   My bibliography  Save this article

A simulation study of demand responsive transit system design

Author

Listed:
  • Quadrifoglio, Luca
  • Dessouky, Maged M.
  • Ordóñez, Fernando

Abstract

In this paper we study the impact on productivity of specific operating practices currently used by demand responsive transit (DRT) providers. We investigate the effect of using a zoning vs. a no-zoning strategy and time-window settings on performance measures such as total trip miles, deadhead miles and fleet size. It is difficult to establish closed-form expressions to assess the impact on the performance measures of a specific zoning practice or time-window setting for a real transportation network. Thus, we conduct this study through a simulation model of the operations of DRT providers on a network based on data for DRT service in Los Angeles County. However, the methodology is quite general and applicable to any other service area. Our results suggest the existence of linear relationships between operating practices and performance measures. In particular we observe that for each minute increase in time-window size the service saves approximately 2 vehicles and 260 miles driven and that a no-zoning strategy is able to satisfy the same demand by employing 60 less vehicles and driving 10,000 less total miles with respect to the current zoning strategy.

Suggested Citation

  • Quadrifoglio, Luca & Dessouky, Maged M. & Ordóñez, Fernando, 2008. "A simulation study of demand responsive transit system design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(4), pages 718-737, May.
  • Handle: RePEc:eee:transa:v:42:y:2008:i:4:p:718-737
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965-8564(08)00025-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fu, Liping, 2002. "A simulation model for evaluating advanced dial-a-ride paratransit systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(4), pages 291-307, May.
    2. Ann Melissa Campbell & Martin Savelsbergh, 2004. "Efficient Insertion Heuristics for Vehicle Routing and Scheduling Problems," Transportation Science, INFORMS, vol. 38(3), pages 369-378, August.
    3. Irina Ioachim & Jacques Desrosiers & Yvan Dumas & Marius M. Solomon & Daniel Villeneuve, 1995. "A Request Clustering Algorithm for Door-to-Door Handicapped Transportation," Transportation Science, INFORMS, vol. 29(1), pages 63-78, February.
    4. Quan Lu & Maged Dessouky, 2004. "An Exact Algorithm for the Multiple Vehicle Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 38(4), pages 503-514, November.
    5. Diana, Marco & Dessouky, Maged M., 2004. "A new regret insertion heuristic for solving large-scale dial-a-ride problems with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 38(6), pages 539-557, July.
    6. Palmer, Kurt & Dessouky, Maged & Abdelmaguid, Tamer, 2004. "Impacts of management practices and advanced technologies on demand responsive transit systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(7), pages 495-509, August.
    7. Paolo Toth & Daniele Vigo, 1997. "Heuristic Algorithms for the Handicapped Persons Transportation Problem," Transportation Science, INFORMS, vol. 31(1), pages 60-71, February.
    8. Lu, Quan & Dessouky, Maged M., 2006. "A new insertion-based construction heuristic for solving the pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 175(2), pages 672-687, December.
    9. Haghani, Ali & Banihashemi, Mohamadreza, 2002. "Heuristic approaches for solving large-scale bus transit vehicle scheduling problem with route time constraints," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(4), pages 309-333, May.
    10. M. W. P. Savelsbergh & M. Sol, 1995. "The General Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 29(1), pages 17-29, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dessouky, Maged M. & Ordóñez, Fernando & Quadrifoglio, Luca, 2005. "Productivity and Cost-Effectiveness of Demand Responsive Transit Systems," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt9qj1d5s0, Institute of Transportation Studies, UC Berkeley.
    2. Zhao, Jiamin & Dessouky, Maged, 2008. "Service capacity design problems for mobility allowance shuttle transit systems," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 135-146, February.
    3. Lu, Quan & Dessouky, Maged M., 2006. "A new insertion-based construction heuristic for solving the pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 175(2), pages 672-687, December.
    4. Luo, Ying & Schonfeld, Paul, 2007. "A rejected-reinsertion heuristic for the static Dial-A-Ride Problem," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 736-755, August.
    5. Diana, Marco & Dessouky, Maged M., 2004. "A new regret insertion heuristic for solving large-scale dial-a-ride problems with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 38(6), pages 539-557, July.
    6. Mahmoudi, Monirehalsadat & Zhou, Xuesong, 2016. "Finding optimal solutions for vehicle routing problem with pickup and delivery services with time windows: A dynamic programming approach based on state–space–time network representations," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 19-42.
    7. Liu, Ran & Xie, Xiaolan & Augusto, Vincent & Rodriguez, Carlos, 2013. "Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care," European Journal of Operational Research, Elsevier, vol. 230(3), pages 475-486.
    8. Hou, Liwen & Li, Dong & Zhang, Dali, 2018. "Ride-matching and routing optimisation: Models and a large neighbourhood search heuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 143-162.
    9. Kirchler, Dominik & Wolfler Calvo, Roberto, 2013. "A Granular Tabu Search algorithm for the Dial-a-Ride Problem," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 120-135.
    10. Yves Molenbruch & Kris Braekers & An Caris, 2017. "Typology and literature review for dial-a-ride problems," Annals of Operations Research, Springer, vol. 259(1), pages 295-325, December.
    11. Jean-François Cordeau & Gilbert Laporte, 2007. "The dial-a-ride problem: models and algorithms," Annals of Operations Research, Springer, vol. 153(1), pages 29-46, September.
    12. Liu, Mengyang & Luo, Zhixing & Lim, Andrew, 2015. "A branch-and-cut algorithm for a realistic dial-a-ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 267-288.
    13. Zhang, Zhenzhen & Liu, Mengyang & Lim, Andrew, 2015. "A memetic algorithm for the patient transportation problem," Omega, Elsevier, vol. 54(C), pages 60-71.
    14. Schaumann, Sarah K. & Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2023. "Route efficiency implications of time windows and vehicle capacities in first- and last-mile logistics," European Journal of Operational Research, Elsevier, vol. 311(1), pages 88-111.
    15. Quan Lu & Maged Dessouky, 2004. "An Exact Algorithm for the Multiple Vehicle Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 38(4), pages 503-514, November.
    16. Mahmoudi, Monirehalsadat & Chen, Junhua & Shi, Tie & Zhang, Yongxiang & Zhou, Xuesong, 2019. "A cumulative service state representation for the pickup and delivery problem with transfers," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 351-380.
    17. Chandra, Shailesh & Quadrifoglio, Luca, 2013. "A model for estimating the optimal cycle length of demand responsive feeder transit services," Transportation Research Part B: Methodological, Elsevier, vol. 51(C), pages 1-16.
    18. Abdulkader, M.M.S. & Gajpal, Yuvraj & ElMekkawy, Tarek Y., 2018. "Vehicle routing problem in omni-channel retailing distribution systems," International Journal of Production Economics, Elsevier, vol. 196(C), pages 43-55.
    19. repec:dgr:rugsom:07010 is not listed on IDEAS
    20. Karabuk, Suleyman, 2009. "A nested decomposition approach for solving the paratransit vehicle scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 43(4), pages 448-465, May.
    21. Diana, Marco & Dessouky, Maged M. & Xia, Nan, 2006. "A model for the fleet sizing of demand responsive transportation services with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 40(8), pages 651-666, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:42:y:2008:i:4:p:718-737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.