IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v67y2014icp18-34.html
   My bibliography  Save this article

Scheduled paratransit transport systems

Author

Listed:
  • Dikas, G.
  • Minis, I.

Abstract

In this paper we focus on ways to provide individualized services to people with mobility challenges using existing modes of public transport. We study the design of an interesting case, in which a bus operating in a public transport route may diverge from its nominal path to pick-up passengers with limited mobility and drop them off at their destination. We have modeled the design problem by a mixed integer-linear program, and we developed an exact Branch and Price approach to solve it to optimality. The proposed approach includes a labeling algorithm in which we introduced appropriate dominance rules, which do not compromise optimality. We have compared the efficiency of our approach with that of related algorithms from the literature. Furthermore, we have used the proposed approach to study key aspects of the system design problem, such as the effect of various constraints on the service level, and the tuning of the system’s parameters to address different transport environments.

Suggested Citation

  • Dikas, G. & Minis, I., 2014. "Scheduled paratransit transport systems," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 18-34.
  • Handle: RePEc:eee:transb:v:67:y:2014:i:c:p:18-34
    DOI: 10.1016/j.trb.2014.05.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261514000745
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2014.05.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luca Quadrifoglio & Randolph W. Hall & Maged M. Dessouky, 2006. "Performance and Design of Mobility Allowance Shuttle Transit Services: Bounds on the Maximum Longitudinal Velocity," Transportation Science, INFORMS, vol. 40(3), pages 351-363, August.
    2. Quadrifoglio, Luca & Dessouky, Maged M. & Ordonez, Fernando, 2008. "Mobility allowance shuttle transit (MAST) services: MIP formulation and strengthening with logic constraints," European Journal of Operational Research, Elsevier, vol. 185(2), pages 481-494, March.
    3. Luis Ferreira & Phil Charles & Clara Tether, 2007. "Evaluating Flexible Transport Solutions," Transportation Planning and Technology, Taylor & Francis Journals, vol. 30(2-3), pages 249-269.
    4. Chandra, Shailesh & Quadrifoglio, Luca, 2013. "A model for estimating the optimal cycle length of demand responsive feeder transit services," Transportation Research Part B: Methodological, Elsevier, vol. 51(C), pages 1-16.
    5. Luca Quadrifoglio & Maged M. Dessouky, 2008. "Sensitivity Analyses over the Service Area for Mobility Allowance Shuttle Transit (MAST) Services," Lecture Notes in Economics and Mathematical Systems, in: Mark Hickman & Pitu Mirchandani & Stefan Voß (ed.), Computer-aided Systems in Public Transport, pages 419-432, Springer.
    6. Villeneuve, Daniel & Desaulniers, Guy, 2005. "The shortest path problem with forbidden paths," European Journal of Operational Research, Elsevier, vol. 165(1), pages 97-107, August.
    7. Teodor Gabriel Crainic & Federico Malucelli & Maddalena Nonato & François Guertin, 2005. "Meta-Heuristics for a Class of Demand-Responsive Transit Systems," INFORMS Journal on Computing, INFORMS, vol. 17(1), pages 10-24, February.
    8. Kirchler, Dominik & Wolfler Calvo, Roberto, 2013. "A Granular Tabu Search algorithm for the Dial-a-Ride Problem," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 120-135.
    9. Jean-François Cordeau & Gilbert Laporte, 2007. "The dial-a-ride problem: models and algorithms," Annals of Operations Research, Springer, vol. 153(1), pages 29-46, September.
    10. Nguyen-Hoang, Phuong & Yeung, Ryan, 2010. "What is paratransit worth?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(10), pages 841-853, December.
    11. Daganzo, Carlos F., 1984. "Checkpoint dial-a-ride systems," Transportation Research Part B: Methodological, Elsevier, vol. 18(4-5), pages 315-327.
    12. Bruce L. Golden & Larry Levy & Rakesh Vohra, 1987. "The orienteering problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(3), pages 307-318, June.
    13. Stefan Ropke & Jean-François Cordeau, 2009. "Branch and Cut and Price for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 43(3), pages 267-286, August.
    14. Brake, Jenny & Mulley, Corinne & Nelson, John D. & Wright, Steve, 2007. "Key lessons learned from recent experience with Flexible Transport Services," Transport Policy, Elsevier, vol. 14(6), pages 458-466, November.
    15. Nelson, John D. & Wright, Steve & Masson, Brian & Ambrosino, Giorgio & Naniopoulos, Aristotelis, 2010. "Recent developments in Flexible Transport Services," Research in Transportation Economics, Elsevier, vol. 29(1), pages 243-248.
    16. Stefan Irnich & Guy Desaulniers, 2005. "Shortest Path Problems with Resource Constraints," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 33-65, Springer.
    17. Vansteenwegen, Pieter & Souffriau, Wouter & Oudheusden, Dirk Van, 2011. "The orienteering problem: A survey," European Journal of Operational Research, Elsevier, vol. 209(1), pages 1-10, February.
    18. Broome, Kieran & Worrall, Linda & Fleming, Jennifer & Boldy, Duncan, 2012. "Evaluation of flexible route bus transport for older people," Transport Policy, Elsevier, vol. 21(C), pages 85-91.
    19. Mulley, Corinne & Nelson, John D., 2009. "Flexible transport services: A new market opportunity for public transport," Research in Transportation Economics, Elsevier, vol. 25(1), pages 39-45.
    20. Paquette, Julie & Cordeau, Jean-François & Laporte, Gilbert & Pascoal, Marta M.B., 2013. "Combining multicriteria analysis and tabu search for dial-a-ride problems," Transportation Research Part B: Methodological, Elsevier, vol. 52(C), pages 1-16.
    21. Konstantinos Zografos & Konstantinos Androutsopoulos & Teemu Sihvola, 2008. "A methodological approach for developing and assessing business models for flexible transport systems," Transportation, Springer, vol. 35(6), pages 777-795, November.
    22. Karabuk, Suleyman, 2009. "A nested decomposition approach for solving the paratransit vehicle scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 43(4), pages 448-465, May.
    23. M. W. P. Savelsbergh & M. Sol, 1995. "The General Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 29(1), pages 17-29, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aylin Kalpakcı & Neslihan Karataş Ünverdi, 2016. "Integration of paratransit systems with inner-city bus transport: the case of Izmir," Public Transport, Springer, vol. 8(3), pages 405-426, December.
    2. Li, Mingyang & Tang, Jinjun, 2023. "Simulation-based optimization considering energy consumption for assisted station locations to enhance flex-route transit," Energy, Elsevier, vol. 277(C).
    3. Paul Davidsson & Banafsheh Hajinasab & Johan Holmgren & Åse Jevinger & Jan A. Persson, 2016. "The Fourth Wave of Digitalization and Public Transport: Opportunities and Challenges," Sustainability, MDPI, vol. 8(12), pages 1-16, November.
    4. Orlis, Christos & Laganá, Demetrio & Dullaert, Wout & Vigo, Daniele, 2020. "Distribution with Quality of Service Considerations: The Capacitated Routing Problem with Profits and Service Level Requirements," Omega, Elsevier, vol. 93(C).
    5. G. Dikas & I. Minis, 2018. "Scheduled Paratransit Transport Enhanced by Accessible Taxis," Transportation Science, INFORMS, vol. 52(5), pages 1122-1140, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. G. Dikas & I. Minis, 2018. "Scheduled Paratransit Transport Enhanced by Accessible Taxis," Transportation Science, INFORMS, vol. 52(5), pages 1122-1140, October.
    2. Jokinen, Jani-Pekka & Sihvola, Teemu & Mladenovic, Milos N., 2019. "Policy lessons from the flexible transport service pilot Kutsuplus in the Helsinki Capital Region," Transport Policy, Elsevier, vol. 76(C), pages 123-133.
    3. Sayarshad, Hamid R. & Chow, Joseph Y.J., 2015. "A scalable non-myopic dynamic dial-a-ride and pricing problem," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 539-554.
    4. Liu, Mengyang & Luo, Zhixing & Lim, Andrew, 2015. "A branch-and-cut algorithm for a realistic dial-a-ride problem," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 267-288.
    5. Bruni, M.E. & Guerriero, F. & Beraldi, P., 2014. "Designing robust routes for demand-responsive transport systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 1-16.
    6. Alan Lee & Martin Savelsbergh, 2017. "An extended demand responsive connector," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 25-50, March.
    7. Ho, Sin C. & Szeto, W.Y. & Kuo, Yong-Hong & Leung, Janny M.Y. & Petering, Matthew & Tou, Terence W.H., 2018. "A survey of dial-a-ride problems: Literature review and recent developments," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 395-421.
    8. Qiu, Feng & Shen, Jinxing & Zhang, Xuechi & An, Chengchuan, 2015. "Demi-flexible operating policies to promote the performance of public transit in low-demand areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 215-230.
    9. Yves Molenbruch & Kris Braekers & An Caris, 2017. "Typology and literature review for dial-a-ride problems," Annals of Operations Research, Springer, vol. 259(1), pages 295-325, December.
    10. Albert H. Schrotenboer & Evrim Ursavas & Iris F. A. Vis, 2019. "A Branch-and-Price-and-Cut Algorithm for Resource-Constrained Pickup and Delivery Problems," Transportation Science, INFORMS, vol. 53(4), pages 1001-1022, July.
    11. Zahra Navidi & Nicole Ronald & Stephan Winter, 2018. "Comparison between ad-hoc demand responsive and conventional transit: a simulation study," Public Transport, Springer, vol. 10(1), pages 147-167, May.
    12. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    13. Badia, Hugo & Jenelius, Erik, 2021. "Design and operation of feeder systems in the era of automated and electric buses," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 146-172.
    14. Li, Chongshou & Gong, Lijun & Luo, Zhixing & Lim, Andrew, 2019. "A branch-and-price-and-cut algorithm for a pickup and delivery problem in retailing," Omega, Elsevier, vol. 89(C), pages 71-91.
    15. Quadrifoglio, Luca & Li, Xiugang, 2009. "A methodology to derive the critical demand density for designing and operating feeder transit services," Transportation Research Part B: Methodological, Elsevier, vol. 43(10), pages 922-935, December.
    16. Veaceslav Ghilas & Jean-François Cordeau & Emrah Demir & Tom Van Woensel, 2018. "Branch-and-Price for the Pickup and Delivery Problem with Time Windows and Scheduled Lines," Transportation Science, INFORMS, vol. 52(5), pages 1191-1210, October.
    17. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    18. Chen, Peng Will & Nie, Yu Marco, 2017. "Analysis of an idealized system of demand adaptive paired-line hybrid transit," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 38-54.
    19. Yuan Qu & Jonathan F. Bard, 2015. "A Branch-and-Price-and-Cut Algorithm for Heterogeneous Pickup and Delivery Problems with Configurable Vehicle Capacity," Transportation Science, INFORMS, vol. 49(2), pages 254-270, May.
    20. Timo Gschwind & Stefan Irnich, 2015. "Effective Handling of Dynamic Time Windows and Its Application to Solving the Dial-a-Ride Problem," Transportation Science, INFORMS, vol. 49(2), pages 335-354, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:67:y:2014:i:c:p:18-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.