IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v80y2015i3p625-644.html
   My bibliography  Save this article

Heteroscedastic Latent Trait Models for Dichotomous Data

Author

Listed:
  • Dylan Molenaar

Abstract

Effort has been devoted to account for heteroscedasticity with respect to observed or latent moderator variables in item or test scores. For instance, in the multi-group generalized linear latent trait model, it could be tested whether the observed (polychoric) covariance matrix differs across the levels of an observed moderator variable. In the case that heteroscedasticity arises across the latent trait itself, existing models commonly distinguish between heteroscedastic residuals and a skewed trait distribution. These models have valuable applications in intelligence, personality and psychopathology research. However, existing approaches are only limited to continuous and polytomous data, while dichotomous data are common in intelligence and psychopathology research. Therefore, in present paper, a heteroscedastic latent trait model is presented for dichotomous data. The model is studied in a simulation study, and applied to data pertaining alcohol use and cognitive ability. Copyright The Psychometric Society 2015

Suggested Citation

  • Dylan Molenaar, 2015. "Heteroscedastic Latent Trait Models for Dichotomous Data," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 625-644, September.
  • Handle: RePEc:spr:psycho:v:80:y:2015:i:3:p:625-644
    DOI: 10.1007/s11336-014-9406-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11336-014-9406-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11336-014-9406-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Thissen & Lynne Steinberg, 1986. "A taxonomy of item response models," Psychometrika, Springer;The Psychometric Society, vol. 51(4), pages 567-577, December.
    2. Azevedo, Caio L.N. & Bolfarine, Heleno & Andrade, Dalton F., 2011. "Bayesian inference for a skew-normal IRT model under the centred parameterization," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 353-365, January.
    3. Geoff Masters, 1982. "A rasch model for partial credit scoring," Psychometrika, Springer;The Psychometric Society, vol. 47(2), pages 149-174, June.
    4. R. Bock & Murray Aitkin, 1981. "Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 443-459, December.
    5. Conor Dolan & Han Maas, 1998. "Fitting multivariage normal finite mixtures subject to structural equation modeling," Psychometrika, Springer;The Psychometric Society, vol. 63(3), pages 227-253, September.
    6. Ulf Olsson, 1979. "Maximum likelihood estimation of the polychoric correlation coefficient," Psychometrika, Springer;The Psychometric Society, vol. 44(4), pages 443-460, December.
    7. Andreas Klein & Helfried Moosbrugger, 2000. "Maximum likelihood estimation of latent interaction effects with the LMS method," Psychometrika, Springer;The Psychometric Society, vol. 65(4), pages 457-474, December.
    8. Albert Satorra & Willem Saris, 1985. "Power of the likelihood ratio test in covariance structure analysis," Psychometrika, Springer;The Psychometric Society, vol. 50(1), pages 83-90, March.
    9. William Meredith, 1993. "Measurement invariance, factor analysis and factorial invariance," Psychometrika, Springer;The Psychometric Society, vol. 58(4), pages 525-543, December.
    10. Kamel Jedidi & Harsharanjeet S. Jagpal & Wayne S. DeSarbo, 1997. "Finite-Mixture Structural Equation Models for Response-Based Segmentation and Unobserved Heterogeneity," Marketing Science, INFORMS, vol. 16(1), pages 39-59.
    11. R. Darrell Bock, 1972. "Estimating item parameters and latent ability when responses are scored in two or more nominal categories," Psychometrika, Springer;The Psychometric Society, vol. 37(1), pages 29-51, March.
    12. Marti J. Anderson, 2006. "Distance-Based Tests for Homogeneity of Multivariate Dispersions," Biometrics, The International Biometric Society, vol. 62(1), pages 245-253, March.
    13. Fumiko Samejima, 2000. "Logistic positive exponent family of models: Virtue of asymmetric item characteristic curves," Psychometrika, Springer;The Psychometric Society, vol. 65(3), pages 319-335, September.
    14. A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
    15. Fumiko Samejima, 1997. "Departure from normal assumptions: A promise for future psychometrics with substantive mathematical modeling," Psychometrika, Springer;The Psychometric Society, vol. 62(4), pages 471-493, December.
    16. David Thissen & Lynne Steinberg, 1984. "A response model for multiple choice items," Psychometrika, Springer;The Psychometric Society, vol. 49(4), pages 501-519, December.
    17. Harvey, A C, 1976. "Estimating Regression Models with Multiplicative Heteroscedasticity," Econometrica, Econometric Society, vol. 44(3), pages 461-465, May.
    18. Fumiko Samejima, 2008. "Graded response model based on the logistic positive exponent family of models for dichotomous responses," Psychometrika, Springer;The Psychometric Society, vol. 73(4), pages 561-578, December.
    19. Robert Mislevy & Norman Verhelst, 1990. "Modeling item responses when different subjects employ different solution strategies," Psychometrika, Springer;The Psychometric Society, vol. 55(2), pages 195-215, June.
    20. Gerhard Fischer, 1983. "Logistic latent trait models with linear constraints," Psychometrika, Springer;The Psychometric Society, vol. 48(1), pages 3-26, March.
    21. Sock-Cheng Lewin-Koh, 2003. "Heteroscedastic factor analysis," Biometrika, Biometrika Trust, vol. 90(1), pages 85-97, March.
    22. David Andrich, 1978. "A rating formulation for ordered response categories," Psychometrika, Springer;The Psychometric Society, vol. 43(4), pages 561-573, December.
    23. Bengt Muthén & Anders Christoffersson, 1981. "Simultaneous factor analysis of dichotomous variables in several groups," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 407-419, December.
    24. Sik-Yum Lee & Wai-Yin Poon & P. Bentler, 1989. "Simultaneous analysis of multivariate polytomous variates in several groups," Psychometrika, Springer;The Psychometric Society, vol. 54(1), pages 63-73, March.
    25. Irini Moustaki & Martin Knott, 2000. "Generalized latent trait models," Psychometrika, Springer;The Psychometric Society, vol. 65(3), pages 391-411, September.
    26. Yoshio Takane & Jan Leeuw, 1987. "On the relationship between item response theory and factor analysis of discretized variables," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 393-408, September.
    27. Edgar Merkle & Achim Zeileis, 2013. "Tests of Measurement Invariance Without Subgroups: A Generalization of Classical Methods," Psychometrika, Springer;The Psychometric Society, vol. 78(1), pages 59-82, January.
    28. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    29. Dylan Molenaar & Conor Dolan & Paul Boeck, 2012. "The Heteroscedastic Graded Response Model with a Skewed Latent Trait: Testing Statistical and Substantive Hypotheses Related to Skewed Item Category Functions," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 455-478, July.
    30. Sophia Rabe-Hesketh & Anders Skrondal & Andrew Pickles, 2004. "Generalized multilevel structural equation modeling," Psychometrika, Springer;The Psychometric Society, vol. 69(2), pages 167-190, June.
    31. Anders Christoffersson, 1975. "Factor analysis of dichotomized variables," Psychometrika, Springer;The Psychometric Society, vol. 40(1), pages 5-32, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel M. Bolt & Xiangyi Liao, 2022. "Item Complexity: A Neglected Psychometric Feature of Test Items?," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1195-1213, December.
    2. Shaobo Jin & Fan Yang-Wallentin, 2017. "Asymptotic Robustness Study of the Polychoric Correlation Estimation," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 67-85, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anders Skrondal & Sophia Rabe‐Hesketh, 2007. "Latent Variable Modelling: A Survey," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 712-745, December.
    2. Dylan Molenaar & Conor Dolan & Paul Boeck, 2012. "The Heteroscedastic Graded Response Model with a Skewed Latent Trait: Testing Statistical and Substantive Hypotheses Related to Skewed Item Category Functions," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 455-478, July.
    3. Timothy R. Johnson & Daniel M. Bolt, 2010. "On the Use of Factor-Analytic Multinomial Logit Item Response Models to Account for Individual Differences in Response Style," Journal of Educational and Behavioral Statistics, , vol. 35(1), pages 92-114, February.
    4. Albert Maydeu-Olivares & Harry Joe, 2006. "Limited Information Goodness-of-fit Testing in Multidimensional Contingency Tables," Psychometrika, Springer;The Psychometric Society, vol. 71(4), pages 713-732, December.
    5. Maydeu Olivares, Alberto & D'Zurilla, Thomas J. & Morera, Osvaldo, 1996. "Assessing measurement invariance in questionnaires within latent trait models using item response theory," DES - Working Papers. Statistics and Econometrics. WS 10456, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Singh, Jagdip, 2004. "Tackling measurement problems with Item Response Theory: Principles, characteristics, and assessment, with an illustrative example," Journal of Business Research, Elsevier, vol. 57(2), pages 184-208, February.
    7. Javier Revuelta, 2008. "The generalized Logit-Linear Item Response Model for Binary-Designed Items," Psychometrika, Springer;The Psychometric Society, vol. 73(3), pages 385-405, September.
    8. David Magis, 2015. "A Note on the Equivalence Between Observed and Expected Information Functions With Polytomous IRT Models," Journal of Educational and Behavioral Statistics, , vol. 40(1), pages 96-105, February.
    9. Mark Reiser, 1989. "An Application of the Item-Response Model to Psychiatric Epidemiology," Sociological Methods & Research, , vol. 18(1), pages 66-103, August.
    10. Michal Abrahamowicz & James Ramsay, 1992. "Multicategorical spline model for item response theory," Psychometrika, Springer;The Psychometric Society, vol. 57(1), pages 5-27, March.
    11. Henk Kelderman & Carl Rijkes, 1994. "Loglinear multidimensional IRT models for polytomously scored items," Psychometrika, Springer;The Psychometric Society, vol. 59(2), pages 149-176, June.
    12. David Magis, 2015. "A Note on Weighted Likelihood and Jeffreys Modal Estimation of Proficiency Levels in Polytomous Item Response Models," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 200-204, March.
    13. Javier Revuelta, 2009. "Identifiability and Equivalence of GLLIRM Models," Psychometrika, Springer;The Psychometric Society, vol. 74(2), pages 257-272, June.
    14. Javier Revuelta, 2010. "Estimating Difficulty from Polytomous Categorical Data," Psychometrika, Springer;The Psychometric Society, vol. 75(2), pages 331-350, June.
    15. David Magis & Norman Verhelst, 2017. "On the Finiteness of the Weighted Likelihood Estimator of Ability," Psychometrika, Springer;The Psychometric Society, vol. 82(3), pages 637-647, September.
    16. Yoshio Takane & Jan Leeuw, 1987. "On the relationship between item response theory and factor analysis of discretized variables," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 393-408, September.
    17. Piotr Tarka, 2018. "An overview of structural equation modeling: its beginnings, historical development, usefulness and controversies in the social sciences," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(1), pages 313-354, January.
    18. Silvana Bortolotti & Rafael Tezza & Dalton Andrade & Antonio Bornia & Afonso Sousa Júnior, 2013. "Relevance and advantages of using the item response theory," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(4), pages 2341-2360, June.
    19. David Hessen, 2012. "Fitting and Testing Conditional Multinormal Partial Credit Models," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 693-709, October.
    20. Hua-Hua Chang, 1996. "The asymptotic posterior normality of the latent trait for polytomous IRT models," Psychometrika, Springer;The Psychometric Society, vol. 61(3), pages 445-463, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:80:y:2015:i:3:p:625-644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.