IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v62y1997i4p471-493.html
   My bibliography  Save this article

Departure from normal assumptions: A promise for future psychometrics with substantive mathematical modeling

Author

Listed:
  • Fumiko Samejima

Abstract

No abstract is available for this item.

Suggested Citation

  • Fumiko Samejima, 1997. "Departure from normal assumptions: A promise for future psychometrics with substantive mathematical modeling," Psychometrika, Springer;The Psychometric Society, vol. 62(4), pages 471-493, December.
  • Handle: RePEc:spr:psycho:v:62:y:1997:i:4:p:471-493
    DOI: 10.1007/BF02294639
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02294639
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02294639?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geoff Masters, 1982. "A rasch model for partial credit scoring," Psychometrika, Springer;The Psychometric Society, vol. 47(2), pages 149-174, June.
    2. Fumiko Samejima, 1993. "An approximation for the bias function of the maximum likelihood estimate of a latent variable for the general case where the item responses are discrete," Psychometrika, Springer;The Psychometric Society, vol. 58(1), pages 119-138, March.
    3. Fumiko Samejima, 1995. "Acceleration model in the heterogeneous case of the general graded response model," Psychometrika, Springer;The Psychometric Society, vol. 60(4), pages 549-572, December.
    4. J. Ramsay, 1991. "Kernel smoothing approaches to nonparametric item characteristic curve estimation," Psychometrika, Springer;The Psychometric Society, vol. 56(4), pages 611-630, December.
    5. Bas Hemker & Klaas Sijtsma & Ivo Molenaar & Brian Junker, 1996. "Polytomous IRT models and monotone likelihood ratio of the total score," Psychometrika, Springer;The Psychometric Society, vol. 61(4), pages 679-693, December.
    6. Thomas Warm, 1989. "Weighted likelihood estimation of ability in item response theory," Psychometrika, Springer;The Psychometric Society, vol. 54(3), pages 427-450, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sally Paganin & Christopher J. Paciorek & Claudia Wehrhahn & Abel Rodríguez & Sophia Rabe-Hesketh & Perry de Valpine, 2023. "Computational Strategies and Estimation Performance With Bayesian Semiparametric Item Response Theory Models," Journal of Educational and Behavioral Statistics, , vol. 48(2), pages 147-188, April.
    2. Padilla, Juan L. & Azevedo, Caio L.N. & Lachos, Victor H., 2018. "Multidimensional multiple group IRT models with skew normal latent trait distributions," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 250-268.
    3. Heleno Bolfarine & Jorge Luis Bazan, 2010. "Bayesian Estimation of the Logistic Positive Exponent IRT Model," Journal of Educational and Behavioral Statistics, , vol. 35(6), pages 693-713, December.
    4. Dylan Molenaar, 2015. "Heteroscedastic Latent Trait Models for Dichotomous Data," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 625-644, September.
    5. Azevedo, Caio L.N. & Bolfarine, Heleno & Andrade, Dalton F., 2011. "Bayesian inference for a skew-normal IRT model under the centred parameterization," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 353-365, January.
    6. Dylan Molenaar & Conor Dolan & Paul Boeck, 2012. "The Heteroscedastic Graded Response Model with a Skewed Latent Trait: Testing Statistical and Substantive Hypotheses Related to Skewed Item Category Functions," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 455-478, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ligtvoet, R., 2015. "A test for using the sum score to obtain a stochastic ordering of subjects," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 136-139.
    2. Bas Hemker & L. Andries van der Ark & Klaas Sijtsma, 2001. "On measurement properties of continuation ratio models," Psychometrika, Springer;The Psychometric Society, vol. 66(4), pages 487-506, December.
    3. van der Ark, L.A., 1999. "A reference card for the relationships between IRT models for ordered polytomous items and some relevant properties," WORC Paper 99.10.02, Tilburg University, Work and Organization Research Centre.
    4. Janna Niens & Lisa Richter-Beuschel & Tobias C. Stubbe & Susanne Bögeholz, 2021. "Procedural Knowledge of Primary School Teachers in Madagascar for Teaching and Learning towards Land-Use- and Health-Related Sustainable Development Goals," Sustainability, MDPI, vol. 13(16), pages 1-36, August.
    5. Chun Wang, 2015. "On Latent Trait Estimation in Multidimensional Compensatory Item Response Models," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 428-449, June.
    6. Marko Böhm & Jan Barkmann & Sabina Eggert & Claus H. Carstensen & Susanne Bögeholz, 2020. "Quantitative Modelling and Perspective Taking: Two Competencies of Decision Making for Sustainable Development," Sustainability, MDPI, vol. 12(17), pages 1-32, August.
    7. Jesper Tijmstra & Maria Bolsinova, 2019. "Bayes Factors for Evaluating Latent Monotonicity in Polytomous Item Response Theory Models," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 846-869, September.
    8. Xiao Li & Hanchen Xu & Jinming Zhang & Hua-hua Chang, 2023. "Deep Reinforcement Learning for Adaptive Learning Systems," Journal of Educational and Behavioral Statistics, , vol. 48(2), pages 220-243, April.
    9. David Andrich, 2010. "Sufficiency and Conditional Estimation of Person Parameters in the Polytomous Rasch Model," Psychometrika, Springer;The Psychometric Society, vol. 75(2), pages 292-308, June.
    10. Anders Skrondal & Sophia Rabe-Hesketh, 2022. "The Role of Conditional Likelihoods in Latent Variable Modeling," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 799-834, September.
    11. Georg Gittler & Gerhard Fischer, 2011. "IRT-Based Measurement of Short-Term Changes of Ability, With an Application to Assessing the “Mozart Effectâ€," Journal of Educational and Behavioral Statistics, , vol. 36(1), pages 33-75, February.
    12. Robert Zwitser & Gunter Maris, 2015. "Conditional Statistical Inference with Multistage Testing Designs," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 65-84, March.
    13. Gerhard Tutz, 2021. "Hierarchical Models for the Analysis of Likert Scales in Regression and Item Response Analysis," International Statistical Review, International Statistical Institute, vol. 89(1), pages 18-35, April.
    14. David Magis & Gilles Raîche & Sébastien Béland, 2012. "A Didactic Presentation of Snijders’s lz* Index of Person Fit With Emphasis on Response Model Selection and Ability Estimation," Journal of Educational and Behavioral Statistics, , vol. 37(1), pages 57-81, February.
    15. Gerhard Tutz, 2022. "Item Response Thresholds Models: A General Class of Models for Varying Types of Items," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1238-1269, December.
    16. Daphna Harel & Russell J. Steele, 2018. "An Information Matrix Test for the Collapsing of Categories Under the Partial Credit Model," Journal of Educational and Behavioral Statistics, , vol. 43(6), pages 721-750, December.
    17. Tabea Feseker & Timo Gnambs & Cordula Artelt, 2021. "Setting a standard for low reading proficiency: A comparison of the bookmark procedure and constrained mixture Rasch model," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-22, November.
    18. Wim Linden, 1998. "Stochastic order in dichotomous item response models for fixed, adaptive, and multidimensional tests," Psychometrika, Springer;The Psychometric Society, vol. 63(3), pages 211-226, September.
    19. L. Ark & Wicher Bergsma, 2010. "A Note on Stochastic Ordering of the Latent Trait Using the Sum of Polytomous Item Scores," Psychometrika, Springer;The Psychometric Society, vol. 75(2), pages 272-279, June.
    20. Bas Hemker & Klaas Sijtsma & Ivo Molenaar & Brian Junker, 1997. "Stochastic ordering using the latent trait and the sum score in polytomous IRT models," Psychometrika, Springer;The Psychometric Society, vol. 62(3), pages 331-347, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:62:y:1997:i:4:p:471-493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.