IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v20y2015i8p1529-1544.html
   My bibliography  Save this article

Mitigating greenhouse gas fluxes from cultivated organic soils with raised water table

Author

Listed:
  • Kristiina Regina
  • Jatta Sheehy
  • Merja Myllys

Abstract

Cultivated organic soils are a remarkable source of greenhouse gases (GHG) in many countries. Keeping the ground water table as high as possible could lower the mineralization rate of the peat and thus the emissions of carbon dioxide (CO 2 ) and nitrous oxide (N 2 O) from these soils. We studied the effect of raised water table on the emissions of N 2 O, CO 2 and methane (CH 4 ) from undisturbed peat soil profiles of six different Finnish cultivated organic soils during a 5-week outdoor mesocosm experiment. The aim was to determine an optimum water table that would enable grass cultivation but lower the net gas balance of the soil. Raised water table decreased the GHG emissions from each peat type ranging from weakly decomposed Sphagnum peat to highly humified Carex peat. Based on the results, the optimum water table would be 30 cm below the soil surface. The average reduction of the total net emissions with a raise of water table from a typical drainage depth of 70 to 30 cm was 42 % in the outdoors mesocosm experiment and 23 % at a constant temperature (+6 °C). The emissions of both CO 2 and N 2 O declined and the net consumption of CH 4 changed to net production as the water table rose. The results were confirmed by long-term measurements at one of the sampled sites. As a conclusion, we see that promoting drainage systems enabling raising of the ground water table and cultivation of crops capable of producing good yields also in wet conditions would be beneficial for the GHG mitigation in agriculture. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Kristiina Regina & Jatta Sheehy & Merja Myllys, 2015. "Mitigating greenhouse gas fluxes from cultivated organic soils with raised water table," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(8), pages 1529-1544, December.
  • Handle: RePEc:spr:masfgc:v:20:y:2015:i:8:p:1529-1544
    DOI: 10.1007/s11027-014-9559-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11027-014-9559-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11027-014-9559-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martin, Philip L., 2007. "Immigration and Agriculture (PowerPoint)," Agricultural Outlook Forum 2007 8037, United States Department of Agriculture, Agricultural Outlook Forum.
    2. Huang, Jikun & Rozelle, Scott & Martin, William J. & Liu, Yu, 2007. "Distortions to Agricultural Incentives in China," Agricultural Distortions Working Paper Series 48478, World Bank.
    3. Oecd, 2007. "Competition and Regulation in Agriculture," OECD Journal: Competition Law and Policy, OECD Publishing, vol. 9(2), pages 93-165.
    4. Oecd, 2008. "Partnership for Development: Agriculture in Africa," OECD Papers, OECD Publishing, vol. 7(12), pages 101-123.
    5. Kym Anderson & Will Martin, 2009. "Distortions to Agricultural Incentives in Asia," World Bank Publications - Books, The World Bank Group, number 2611, December.
    6. Mueller, Lothar & Behrendt, Axel & Schalitz, Gisbert & Schindler, Uwe, 2005. "Above ground biomass and water use efficiency of crops at shallow water tables in a temperate climate," Agricultural Water Management, Elsevier, vol. 75(2), pages 117-136, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laasasenaho, K. & Lauhanen, R. & Räsänen, A. & Palomäki, A. & Viholainen, I. & Markkanen, T. & Aalto, T. & Ojanen, P. & Minkkinen, K. & Jokelainen, L. & Lohila, A. & Siira, O.-P. & Marttila, H. & Päkk, 2023. "After-use of cutover peatland from the perspective of landowners: Future effects on the national greenhouse gas budget in Finland," Land Use Policy, Elsevier, vol. 134(C).
    2. Yuzhe Li & Jiangwen Fan & Zhongmin Hu, 2018. "Comparison of Carbon-Use Efficiency Among Different Land-Use Patterns of the Temperate Steppe in the Northern China Pastoral Farming Ecotone," Sustainability, MDPI, vol. 10(2), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lomax, Guy & Workman, Mark & Lenton, Timothy & Shah, Nilay, 2015. "Reframing the policy approach to greenhouse gas removal technologies," Energy Policy, Elsevier, vol. 78(C), pages 125-136.
    2. Huang, Hsin & von Lampe, Martin & van Tongeren, Frank, 2011. "Climate change and trade in agriculture," Food Policy, Elsevier, vol. 36(Supplemen), pages 9-13, January.
    3. Torres, Carlos M.M. Eleto & Kohmann, Marta M. & Fraisse, Clyde W., 2015. "Quantification of greenhouse gas emissions for carbon neutral farming in the Southeastern USA," Agricultural Systems, Elsevier, vol. 137(C), pages 64-75.
    4. Conrad, Yvonne & Fohrer, Nicola, 2016. "Simulating impacts of silage maize (Zea mays) in monoculture and undersown with annual grass (Lolium perenne L.) on the soil water balance in a sandy-humic soil in Northwest Germany," Agricultural Water Management, Elsevier, vol. 178(C), pages 52-65.
    5. Cheng, Kun & Ogle, Stephen M. & Parton, William J. & Pan, Genxing, 2013. "Predicting methanogenesis from rice paddies using the DAYCENT ecosystem model," Ecological Modelling, Elsevier, vol. 261, pages 19-31.
    6. Kathryn Bowen & Kristie Ebi & Sharon Friel, 2014. "Climate change adaptation and mitigation: next steps for cross-sectoral action to protect global health," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(7), pages 1033-1040, October.
    7. B. Henderson & A. Falcucci & A. Mottet & L. Early & B. Werner & H. Steinfeld & P. Gerber, 2017. "Marginal costs of abating greenhouse gases in the global ruminant livestock sector," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(1), pages 199-224, January.
    8. Jones, Curtis D. & Fraisse, Clyde W. & Ozores-Hampton, Monica, 2012. "Quantification of greenhouse gas emissions from open field-grown Florida tomato production," Agricultural Systems, Elsevier, vol. 113(C), pages 64-72.
    9. Rallo, Giovanni & González-Altozano, Pablo & Manzano-Juárez, Juan & Provenzano, Giuseppe, 2017. "Using field measurements and FAO-56 model to assess the eco-physiological response of citrus orchards under regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 180(PA), pages 136-147.
    10. Harris, Paul G. & Chow, Alice S.Y. & Symons, Jonathan, 2012. "Greenhouse gas emissions from cities and regions: International implications revealed by Hong Kong," Energy Policy, Elsevier, vol. 44(C), pages 416-424.
    11. Johnson, Kris A. & Polasky, Stephen & Nelson, Erik & Pennington, Derric, 2012. "Uncertainty in ecosystem services valuation and implications for assessing land use tradeoffs: An agricultural case study in the Minnesota River Basin," Ecological Economics, Elsevier, vol. 79(C), pages 71-79.
    12. Nilsson, Måns & Persson, Åsa, 2012. "Can Earth system interactions be governed? Governance functions for linking climate change mitigation with land use, freshwater and biodiversity protection," Ecological Economics, Elsevier, vol. 75(C), pages 61-71.
    13. Glenk, Klaus & Shrestha, Shailesh & Topp, Cairstiona F.E. & Sánchez, Berta & Iglesias, Ana & Dibari, Camilla & Merante, Paolo, 2017. "A farm level approach to explore farm gross margin effects of soil organic carbon management," Agricultural Systems, Elsevier, vol. 151(C), pages 33-46.
    14. George Nyamadzawo & Yeufeng Shi & Ngonidzashe Chirinda & Jørgen E. Olesen & Farai Mapanda & Menas Wuta & Wenliang Wu & Fanqiao Meng & Myles Oelofse & Andreas Neergaard & Jeff Smith, 2017. "Combining organic and inorganic nitrogen fertilisation reduces N2O emissions from cereal crops: a comparative analysis of China and Zimbabwe," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(2), pages 233-245, February.
    15. Nilsson, Måns & Persson, Åsa, 2012. "Reprint of “Can Earth system interactions be governed? Governance functions for linking climate change mitigation with land use, freshwater and biodiversity protection”," Ecological Economics, Elsevier, vol. 81(C), pages 10-20.
    16. Hashimoto, Hidenori & Yamaguchi, Tsutomu & Kinoshita, Takahiro & Muromachi, Sanehiro, 2017. "Gas separation of flue gas by tetra-n-butylammonium bromide hydrates under moderate pressure conditions," Energy, Elsevier, vol. 129(C), pages 292-298.
    17. Roland Barthel & Tim Reichenau & Tatjana Krimly & Stephan Dabbert & Karl Schneider & Wolfram Mauser, 2012. "Integrated Modeling of Global Change Impacts on Agriculture and Groundwater Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 1929-1951, May.
    18. Garnett, Tara, 2011. "Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)?," Food Policy, Elsevier, vol. 36(S1), pages 23-32.
    19. Bonesmo, Helge & Skjelvåg, Arne Oddvar & Henry Janzen, H. & Klakegg, Ove & Tveito, Ole Einar, 2012. "Greenhouse gas emission intensities and economic efficiency in crop production: A systems analysis of 95 farms," Agricultural Systems, Elsevier, vol. 110(C), pages 142-151.
    20. Jikun Huang & Yu Liu & Will Martin & Scott Rozelle, 2010. "Agricultural Trade Reform and Rural Prosperity: Lessons from China," NBER Chapters, in: China's Growing Role in World Trade, pages 397-423, National Bureau of Economic Research, Inc.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:20:y:2015:i:8:p:1529-1544. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.