IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v137y2015icp64-75.html
   My bibliography  Save this article

Quantification of greenhouse gas emissions for carbon neutral farming in the Southeastern USA

Author

Listed:
  • Torres, Carlos M.M. Eleto
  • Kohmann, Marta M.
  • Fraisse, Clyde W.

Abstract

Agriculture is an important source of greenhouse gases (GHG), especially from crop production practices and enteric fermentation by ruminant livestock. Improved production practices in agriculture and increase in terrestrial carbon sinks are alternatives for mitigating GHG emissions in agriculture. The objective of this study was to estimate GHG emissions from hypothetical farm enterprise combinations in the southeastern United States with a mix of cropland and livestock production and estimate the area of forest plantation necessary to offset these emissions. Four different farm enterprise combinations (Cotton; Maize; Peanut; Wheat + Livestock + Forest) with different production practices were considered in the study resulting in different emission scenarios. We assumed typical production practices of farm operations in the region with 100 ha of cropland area and a herd of 50 cows. GHG emissions were calculated regarding production, storage and transportation of agrochemicals (pre-farm) and farm activities such as fertilization, machinery operation and irrigation (on-farm). Simulated total farm GHG emissions for the different farm enterprise combinations and production practices ranged from 348.8 t CO2e year−1 to 765.6 t CO2e year−1. The estimated forest area required to neutralize these emissions ranged from 19 ha to 40 ha. In general, enterprise combinations with more intense production practices that include the use of irrigation resulted in higher total emissions but lower emissions per unit of commodity produced.

Suggested Citation

  • Torres, Carlos M.M. Eleto & Kohmann, Marta M. & Fraisse, Clyde W., 2015. "Quantification of greenhouse gas emissions for carbon neutral farming in the Southeastern USA," Agricultural Systems, Elsevier, vol. 137(C), pages 64-75.
  • Handle: RePEc:eee:agisys:v:137:y:2015:i:c:p:64-75
    DOI: 10.1016/j.agsy.2015.03.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X15000359
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2015.03.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Weinheimer, Justin & Rajan, Nithya & Johnson, Phillip N. & Maas, Stephan, 2010. "Carbon Footprint: A New Farm Management Consideration in the Southern High Plains," 2010 Annual Meeting, July 25-27, 2010, Denver, Colorado 61760, Agricultural and Applied Economics Association.
    2. Martin, Philip L., 2007. "Immigration and Agriculture (PowerPoint)," Agricultural Outlook Forum 2007 8037, United States Department of Agriculture, Agricultural Outlook Forum.
    3. Huang, Jikun & Rozelle, Scott & Martin, William J. & Liu, Yu, 2007. "Distortions to Agricultural Incentives in China," Agricultural Distortions Working Paper Series 48478, World Bank.
    4. Oecd, 2008. "Partnership for Development: Agriculture in Africa," OECD Papers, OECD Publishing, vol. 7(12), pages 101-123.
    5. Mushtaq, S. & Maraseni, T.N. & Reardon-Smith, K., 2013. "Climate change and water security: Estimating the greenhouse gas costs of achieving water security through investments in modern irrigation technology," Agricultural Systems, Elsevier, vol. 117(C), pages 78-89.
    6. Beauchemin, Karen A. & Henry Janzen, H. & Little, Shannan M. & McAllister, Tim A. & McGinn, Sean M., 2010. "Life cycle assessment of greenhouse gas emissions from beef production in western Canada: A case study," Agricultural Systems, Elsevier, vol. 103(6), pages 371-379, July.
    7. Schneider, Uwe A. & Kumar, Pushpam, 2008. "Greenhouse Gas Mitigation through Agriculture," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 23(1), pages 1-5.
    8. Uwe A. Schneider & Pete Smith, 2008. "Greenhouse Gas Emission Mitigation and Emission Intensities in Agriculture," Working Papers FNU-164, Research unit Sustainability and Global Change, Hamburg University, revised Jul 2008.
    9. Oecd, 2007. "Competition and Regulation in Agriculture," OECD Journal: Competition Law and Policy, OECD Publishing, vol. 9(2), pages 93-165.
    10. Kym Anderson & Will Martin, 2009. "Distortions to Agricultural Incentives in Asia," World Bank Publications - Books, The World Bank Group, number 2611, December.
    11. Lisa Ryan & Nina Campbell, 2012. "Spreading the Net: The Multiple Benefits of Energy Efficiency Improvements," IEA Energy Papers 2012/8, OECD Publishing.
    12. Pushpam Kumar & Uwe A. Schneider, 2008. "Greenhouse gas emission mitigation through agriculture," Working Papers FNU-155, Research unit Sustainability and Global Change, Hamburg University, revised Feb 2008.
    13. Hassan, Mohd Nor Azman & Jaramillo, Paulina & Griffin, W. Michael, 2011. "Life cycle GHG emissions from Malaysian oil palm bioenergy development: The impact on transportation sector's energy security," Energy Policy, Elsevier, vol. 39(5), pages 2615-2625, May.
    14. Maraseni, T.N. & Cockfield, G., 2011. "Does the adoption of zero tillage reduce greenhouse gas emissions? An assessment for the grains industry in Australia," Agricultural Systems, Elsevier, vol. 104(6), pages 451-458, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenheng Wu & Hongying Zhu & Yinghao Qu & Kaiying Xu, 2017. "Regional Disparities in Emissions of Rural Household Energy Consumption: A Case Study of Northwest China," Sustainability, MDPI, vol. 9(5), pages 1-17, May.
    2. Carauta, M. & Guzman-Bustamante, I. & Meurer, K. & Hampf, A. & Troost, C. & Rodrigues, R. & Berger, T., 2018. "Assessing the full distribution of greenhouse gas emissions from crop, livestock and commercial forestry plantations in Brazil's Southern Amazon," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277118, International Association of Agricultural Economists.
    3. Ryan Nedd & Aavudai Anandhi, 2022. "Land Use Changes in the Southeastern United States: Quantitative Changes, Drivers, and Expected Environmental Impacts," Land, MDPI, vol. 11(12), pages 1-25, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Glenk, Klaus & Shrestha, Shailesh & Topp, Cairstiona F.E. & Sánchez, Berta & Iglesias, Ana & Dibari, Camilla & Merante, Paolo, 2017. "A farm level approach to explore farm gross margin effects of soil organic carbon management," Agricultural Systems, Elsevier, vol. 151(C), pages 33-46.
    2. Jones, Curtis D. & Fraisse, Clyde W. & Ozores-Hampton, Monica, 2012. "Quantification of greenhouse gas emissions from open field-grown Florida tomato production," Agricultural Systems, Elsevier, vol. 113(C), pages 64-72.
    3. Huang, Hsin & von Lampe, Martin & van Tongeren, Frank, 2011. "Climate change and trade in agriculture," Food Policy, Elsevier, vol. 36(Supplemen), pages 9-13, January.
    4. Lomax, Guy & Workman, Mark & Lenton, Timothy & Shah, Nilay, 2015. "Reframing the policy approach to greenhouse gas removal technologies," Energy Policy, Elsevier, vol. 78(C), pages 125-136.
    5. Kristiina Regina & Jatta Sheehy & Merja Myllys, 2015. "Mitigating greenhouse gas fluxes from cultivated organic soils with raised water table," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(8), pages 1529-1544, December.
    6. Tek Maraseni & Guangnan Chen & Thomas Banhazi & Jochen Bundschuh & Talal Yusaf, 2015. "An Assessment of Direct on-Farm Energy Use for High Value Grain Crops Grown under Different Farming Practices in Australia," Energies, MDPI, vol. 8(11), pages 1-14, November.
    7. Cheng, Kun & Ogle, Stephen M. & Parton, William J. & Pan, Genxing, 2013. "Predicting methanogenesis from rice paddies using the DAYCENT ecosystem model," Ecological Modelling, Elsevier, vol. 261, pages 19-31.
    8. Kathryn Bowen & Kristie Ebi & Sharon Friel, 2014. "Climate change adaptation and mitigation: next steps for cross-sectoral action to protect global health," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(7), pages 1033-1040, October.
    9. Conrad, Yvonne & Fohrer, Nicola, 2016. "Simulating impacts of silage maize (Zea mays) in monoculture and undersown with annual grass (Lolium perenne L.) on the soil water balance in a sandy-humic soil in Northwest Germany," Agricultural Water Management, Elsevier, vol. 178(C), pages 52-65.
    10. B. Henderson & A. Falcucci & A. Mottet & L. Early & B. Werner & H. Steinfeld & P. Gerber, 2017. "Marginal costs of abating greenhouse gases in the global ruminant livestock sector," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(1), pages 199-224, January.
    11. Bonesmo, Helge & Skjelvåg, Arne Oddvar & Henry Janzen, H. & Klakegg, Ove & Tveito, Ole Einar, 2012. "Greenhouse gas emission intensities and economic efficiency in crop production: A systems analysis of 95 farms," Agricultural Systems, Elsevier, vol. 110(C), pages 142-151.
    12. Hari Wahyu Wijayanto & Kai-An Lo & Hery Toiba & Moh Shadiqur Rahman, 2022. "Does Agroforestry Adoption Affect Subjective Well-Being? Empirical Evidence from Smallholder Farmers in East Java, Indonesia," Sustainability, MDPI, vol. 14(16), pages 1-10, August.
    13. Zhen, Wei & Qin, Quande & Wei, Yi-Ming, 2017. "Spatio-temporal patterns of energy consumption-related GHG emissions in China's crop production systems," Energy Policy, Elsevier, vol. 104(C), pages 274-284.
    14. Huarui Gong & Jing Li & Zhen Liu & Yitao Zhang & Ruixing Hou & Zhu Ouyang, 2022. "Mitigated Greenhouse Gas Emissions in Cropping Systems by Organic Fertilizer and Tillage Management," Land, MDPI, vol. 11(7), pages 1-18, July.
    15. Oliver Lazarus & Sonali McDermid & Jennifer Jacquet, 2021. "The climate responsibilities of industrial meat and dairy producers," Climatic Change, Springer, vol. 165(1), pages 1-21, March.
    16. David Bryngelsson & Fredrik Hedenus & Daniel J. A. Johansson & Christian Azar & Stefan Wirsenius, 2017. "How Do Dietary Choices Influence the Energy-System Cost of Stabilizing the Climate?," Energies, MDPI, vol. 10(2), pages 1-13, February.
    17. Soy-Massoni, Emma & Langemeyer, Johannes & Varga, Diego & Sáez, Marc & Pintó, Josep, 2016. "The importance of ecosystem services in coastal agricultural landscapes: Case study from the Costa Brava, Catalonia," Ecosystem Services, Elsevier, vol. 17(C), pages 43-52.
    18. Telmo José Mendes & Diego Silva Siqueira & Eduardo Barretto Figueiredo & Ricardo de Oliveira Bordonal & Mara Regina Moitinho & José Marques Júnior & Newton La Scala Jr., 2021. "Soil carbon stock estimations: methods and a case study of the Maranhão State, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16410-16427, November.
    19. Ancuta Isbasoiu & Pierre-Alain Jayet & Stéphane De Cara, 2021. "Increasing food production and mitigating agricultural greenhouse gas emissions in the European Union: impacts of carbon pricing and calorie production targeting," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(2), pages 409-440, April.
    20. Amanda Silva‐Parra & Juan Manuel Trujillo‐González & Eric C. Brevik, 2021. "Greenhouse gas balance and mitigation potential of agricultural systems in Colombia: A systematic analysis," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 554-572, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:137:y:2015:i:c:p:64-75. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.