IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v113y2012icp64-72.html
   My bibliography  Save this article

Quantification of greenhouse gas emissions from open field-grown Florida tomato production

Author

Listed:
  • Jones, Curtis D.
  • Fraisse, Clyde W.
  • Ozores-Hampton, Monica

Abstract

Agriculture is a significant contributor to rising atmospheric greenhouse gas (GHG) levels, which is expected to result in sea level rise and increased frequency of extreme weather events and is of increasing global concern. Tomatoes are an important agricultural commodity in Florida, accounting for 40% of the fresh market production in the United States. Quantification of GHG emissions from typical tomato production in Florida could improve understanding of the impact of different GHG emissions sources and identification of areas for potential GHG emissions reductions. A practical methodology was implemented to calculate a representative GHG emissions estimate using production inputs and practices used by the Florida tomato industry. Experts and grower surveys were used to characterize typical Florida tomato production practices. Existing methodologies were used to convert material use and farm operations into GHG emissions estimates. Results indicated that, depending on irrigation system type and water source, the overall average estimates of GHG emissions associated with a growing season ranged from 16,183kgCO2-eqha−1 (0.19kgCO2-eqkgfruit−1) to 22,426kgCO2-eqha−1 (0.27kgCO2-eqkgfruit−1). Irrigation and nitrogen (N) fertilizer accounted for the most emissions, with irrigation accounting for between 2.8% and 26.6% of average GHG emissions and N fertilizer accounting for between 17.7% and 22.8%. It was concluded that increased efficiency in irrigation and N use, and improved methods for polyethylene mulch use and disposal, were the best areas for GHG emissions reductions.

Suggested Citation

  • Jones, Curtis D. & Fraisse, Clyde W. & Ozores-Hampton, Monica, 2012. "Quantification of greenhouse gas emissions from open field-grown Florida tomato production," Agricultural Systems, Elsevier, vol. 113(C), pages 64-72.
  • Handle: RePEc:eee:agisys:v:113:y:2012:i:c:p:64-72
    DOI: 10.1016/j.agsy.2012.07.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X12001199
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2012.07.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martin, Philip L., 2007. "Immigration and Agriculture (PowerPoint)," Agricultural Outlook Forum 2007 8037, United States Department of Agriculture, Agricultural Outlook Forum.
    2. Huang, Jikun & Rozelle, Scott & Martin, William J. & Liu, Yu, 2007. "Distortions to Agricultural Incentives in China," Agricultural Distortions Working Paper Series 48478, World Bank.
    3. Beauchemin, Karen A. & Henry Janzen, H. & Little, Shannan M. & McAllister, Tim A. & McGinn, Sean M., 2010. "Life cycle assessment of greenhouse gas emissions from beef production in western Canada: A case study," Agricultural Systems, Elsevier, vol. 103(6), pages 371-379, July.
    4. Oecd, 2007. "Competition and Regulation in Agriculture," OECD Journal: Competition Law and Policy, OECD Publishing, vol. 9(2), pages 93-165.
    5. Assumpcio Anton & Juan I. Montero & Pere Munoz & Francesc Castells, 2005. "LCA and tomato production in Mediterranean greenhouses," International Journal of Agricultural Resources, Governance and Ecology, Inderscience Enterprises Ltd, vol. 4(2), pages 102-112.
    6. Malte Meinshausen & Nicolai Meinshausen & William Hare & Sarah C. B. Raper & Katja Frieler & Reto Knutti & David J. Frame & Myles R. Allen, 2009. "Greenhouse-gas emission targets for limiting global warming to 2 °C," Nature, Nature, vol. 458(7242), pages 1158-1162, April.
    7. Weinheimer, Justin & Rajan, Nithya & Johnson, Phillip N. & Maas, Stephan, 2010. "Carbon Footprint: A New Farm Management Consideration in the Southern High Plains," 2010 Annual Meeting, July 25-27, 2010, Denver, Colorado 61760, Agricultural and Applied Economics Association.
    8. Spreen, Thomas H. & Dwivedi, Puneet & Goodrich-Schneider, Renee, 2010. "Estimating the Carbon Footprint of Florida Orange Juice," 2010 International European Forum, February 8-12, 2010, Innsbruck-Igls, Austria 100461, International European Forum on System Dynamics and Innovation in Food Networks.
    9. Kym Anderson & Will Martin, 2009. "Distortions to Agricultural Incentives in Asia," World Bank Publications - Books, The World Bank Group, number 2611, December.
    10. Joeri Rogelj & Julia Nabel & Claudine Chen & William Hare & Kathleen Markmann & Malte Meinshausen & Michiel Schaeffer & Kirsten Macey & Niklas Höhne, 2010. "Copenhagen Accord pledges are paltry," Nature, Nature, vol. 464(7292), pages 1126-1128, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sara Ilahi & Yongchang Wu & Muhammad Ahsan Ali Raza & Wenshan Wei & Muhammad Imran & Lyankhua Bayasgalankhuu, 2019. "Optimization Approach for Improving Energy Efficiency and Evaluation of Greenhouse Gas Emission of Wheat Crop using Data Envelopment Analysis," Sustainability, MDPI, vol. 11(12), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torres, Carlos M.M. Eleto & Kohmann, Marta M. & Fraisse, Clyde W., 2015. "Quantification of greenhouse gas emissions for carbon neutral farming in the Southeastern USA," Agricultural Systems, Elsevier, vol. 137(C), pages 64-75.
    2. Cheng, Kun & Ogle, Stephen M. & Parton, William J. & Pan, Genxing, 2013. "Predicting methanogenesis from rice paddies using the DAYCENT ecosystem model," Ecological Modelling, Elsevier, vol. 261, pages 19-31.
    3. Huang, Hsin & von Lampe, Martin & van Tongeren, Frank, 2011. "Climate change and trade in agriculture," Food Policy, Elsevier, vol. 36(Supplemen), pages 9-13, January.
    4. Lomax, Guy & Workman, Mark & Lenton, Timothy & Shah, Nilay, 2015. "Reframing the policy approach to greenhouse gas removal technologies," Energy Policy, Elsevier, vol. 78(C), pages 125-136.
    5. Kristiina Regina & Jatta Sheehy & Merja Myllys, 2015. "Mitigating greenhouse gas fluxes from cultivated organic soils with raised water table," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(8), pages 1529-1544, December.
    6. Kathryn Bowen & Kristie Ebi & Sharon Friel, 2014. "Climate change adaptation and mitigation: next steps for cross-sectoral action to protect global health," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(7), pages 1033-1040, October.
    7. Conrad, Yvonne & Fohrer, Nicola, 2016. "Simulating impacts of silage maize (Zea mays) in monoculture and undersown with annual grass (Lolium perenne L.) on the soil water balance in a sandy-humic soil in Northwest Germany," Agricultural Water Management, Elsevier, vol. 178(C), pages 52-65.
    8. B. Henderson & A. Falcucci & A. Mottet & L. Early & B. Werner & H. Steinfeld & P. Gerber, 2017. "Marginal costs of abating greenhouse gases in the global ruminant livestock sector," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(1), pages 199-224, January.
    9. Bonesmo, Helge & Skjelvåg, Arne Oddvar & Henry Janzen, H. & Klakegg, Ove & Tveito, Ole Einar, 2012. "Greenhouse gas emission intensities and economic efficiency in crop production: A systems analysis of 95 farms," Agricultural Systems, Elsevier, vol. 110(C), pages 142-151.
    10. Rallo, Giovanni & González-Altozano, Pablo & Manzano-Juárez, Juan & Provenzano, Giuseppe, 2017. "Using field measurements and FAO-56 model to assess the eco-physiological response of citrus orchards under regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 180(PA), pages 136-147.
    11. Harris, Paul G. & Chow, Alice S.Y. & Symons, Jonathan, 2012. "Greenhouse gas emissions from cities and regions: International implications revealed by Hong Kong," Energy Policy, Elsevier, vol. 44(C), pages 416-424.
    12. George Nyamadzawo & Yeufeng Shi & Ngonidzashe Chirinda & Jørgen E. Olesen & Farai Mapanda & Menas Wuta & Wenliang Wu & Fanqiao Meng & Myles Oelofse & Andreas Neergaard & Jeff Smith, 2017. "Combining organic and inorganic nitrogen fertilisation reduces N2O emissions from cereal crops: a comparative analysis of China and Zimbabwe," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(2), pages 233-245, February.
    13. Johnson, Kris A. & Polasky, Stephen & Nelson, Erik & Pennington, Derric, 2012. "Uncertainty in ecosystem services valuation and implications for assessing land use tradeoffs: An agricultural case study in the Minnesota River Basin," Ecological Economics, Elsevier, vol. 79(C), pages 71-79.
    14. Nilsson, Måns & Persson, Åsa, 2012. "Reprint of “Can Earth system interactions be governed? Governance functions for linking climate change mitigation with land use, freshwater and biodiversity protection”," Ecological Economics, Elsevier, vol. 81(C), pages 10-20.
    15. Nilsson, Måns & Persson, Åsa, 2012. "Can Earth system interactions be governed? Governance functions for linking climate change mitigation with land use, freshwater and biodiversity protection," Ecological Economics, Elsevier, vol. 75(C), pages 61-71.
    16. Glenk, Klaus & Shrestha, Shailesh & Topp, Cairstiona F.E. & Sánchez, Berta & Iglesias, Ana & Dibari, Camilla & Merante, Paolo, 2017. "A farm level approach to explore farm gross margin effects of soil organic carbon management," Agricultural Systems, Elsevier, vol. 151(C), pages 33-46.
    17. Hashimoto, Hidenori & Yamaguchi, Tsutomu & Kinoshita, Takahiro & Muromachi, Sanehiro, 2017. "Gas separation of flue gas by tetra-n-butylammonium bromide hydrates under moderate pressure conditions," Energy, Elsevier, vol. 129(C), pages 292-298.
    18. Roland Barthel & Tim Reichenau & Tatjana Krimly & Stephan Dabbert & Karl Schneider & Wolfram Mauser, 2012. "Integrated Modeling of Global Change Impacts on Agriculture and Groundwater Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 1929-1951, May.
    19. Garnett, Tara, 2011. "Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)?," Food Policy, Elsevier, vol. 36(S1), pages 23-32.
    20. Gunnar Luderer & Christoph Bertram & Katherine Calvin & Enrica De Cian & Elmar Kriegler, 2015. "Implications of Weak Near-term Climate Policies on Long-term Mitigation Pathways," Working Papers 2015.05, Fondazione Eni Enrico Mattei.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:113:y:2012:i:c:p:64-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.